Appendix 0

Well Susceptibility Forms

This page intentionally left blank.

GROUND WATER CONTAMINATION

Susceptibility Assessment Survey Form

SAMMAMISH PLATEAU WATER \& SEWER DISTRICT 1510 228th Avenue S.E. Issaquah, Washington 98027

GROUND WATER CONTAMINATION
 Susceptibility Assessment Survey Form

TABLE OF CONTENTS

- Susceptibility Assessment Survey Form
- Sammamish Plateau Wells 1 WHPA Capture Zones
- Well IR Asbuilt
- Well 1R WHPA Zones - FYI
- Well Log
- Well 1 Replacement - Construction and Testing Report
- Water Facilities Inventory Form
- Inorganic Chemical Analysis 1989-1993

Ground Water Contamination Susceptibility Assessment Survey Form
 Version 2.1

IMPORTANT! Please complete one form for each ground water source (well, wellfield, spring) used in your water system. Photocopy as necessary.

PART I: System Information

Well owner/manager: SAMiMAMISH PLATEAU WATER + SEWER DISTRICT
Water system name : SAMMAMISH PLATEAU WATER TS EWER DISTRICT
County: KING
water system number: 409009 Source number: $\$ 01$
Well depth: 154 (ft.) (From WFI form)
source name: WELL 1
WA well identification tag number: \qquad -___
\qquad well not tagged

Number of connections: 9000
Township: 24 N
Section: \qquad

Population served:
26,000
Range: \qquad
1/4 |/4 Section:

Latitude/longitude (if available): \qquad 1 \qquad
How was lat./long. determined?
\qquad global positioning device \qquad survey \qquad topographic map __other: \qquad ,

* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V.

PART II: Well Construction and Source Information

1) Date well originally constructed: $8,8,54$ month/day/year last reconstruction: 3,13, 84 month/day/year
\qquad information unavailable
```
Survey Form Var. 2.1
page:
```

2) Well driller:

HO MEYER Co ARMSTRONG DRIN.

$$
\begin{array}{ll}
\text { Rt. } 4 \text { Box } 17 & 10715 \text { GGOHAE E E }
\end{array}
$$

\qquad . well driller unknown
3) Type of well:

- Drilled: __rotary __ bored \quad cable (percussion) _ Dug
_ Other: _ _ spring (s) _ lateral collector (Taney)
__driven __ jetted __ other: ___
Additional comments: \qquad

4) Well report available? χ YES (attach copy to form) __ NO

If no well \log is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate:
 (gallons/min)
Source of information: WATEE FACILITES INUENTORY
If not documented, how was pumping rate determined? \qquad
_ Pumping rate unknown
6) Is this source treated?

No
If so, what type of treatment:
_ disinfection _ filtration _ carbon tilter _ air stripper _ _ uther
Purpose of treatment (describe materials to be removed or controlled by treatment):
7) If source is chlorinated, is a chlorine residual maintained: _ YES _ NO Nf

Residual level: \qquad (At the point closest to the source.)

PART III: Hydrogeologic Information

1) Depth to top of open interval: [check one]
$\ldots<20 \mathrm{tt}$ _ ${ }^{20-50 \mathrm{ft}} \quad 50-100 \mathrm{it} \times 100-200 \mathrm{tt} \ldots>200 \mathrm{t}$
__ information unavailable ('<'means less than; '>'means greater than)
2) Depth to ground water (static water level):
$\ldots<20 \mathrm{ft} \quad \underbrace{20-50 \mathrm{ft}} \ldots 50-100 \mathrm{ft} \ngtr 100 \mathrm{ft}$
_ flowing wellspring (artesian)
How was water level determined?.
$X_{\text {well }} \log$ \qquad other: \qquad
__ depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure: N / A
\qquad psi (pounds per square inch)
or
\qquad feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir, or catchment associated with this source: \qquad YES \qquad NO n / A
5) Wellhead elevation (height above mean sea level): 465 (it)

How was elevation determined? \qquad topographic map \qquad Drilling/Well Log \qquad altimeter
\qquad other:

\qquad information unavailable
6) Continuing layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)
evidence of a confining layer in well ing
_ no evidence of a confining layer in well log
If there is evidence of a confining layer. is the depth to ground water more than 20 feet above the
or therein
information unavailable

 the lowest confining layer.
7) Sanitary setback:
$\ldots<\underset{*}{100 \mathrm{ft}^{*} \underset{\text { if less than } 100 \mathrm{ft} \text { describe the site conditions: }}{ }>100 \mathrm{ft}}$
8) Wellhead construction:
wellhead enclosed in a weilhouse
د controlied access (describe): Fenced + Gated

- other uses for wellhouse (describe): \qquad
_ no wellhead control

9) Surface seal:

- 18 ft
_ < 18 ft (no Department of Ecoiogy approval)
('<'means less than)
_ < 18 ft (Approved by Ecology, include documentation) ('<'means less than)
$x>18 \mathrm{it}$
('> 'means greater than)
\qquad depth of seal unknown
__ no surface seal

10) Annual rainfall (inches per year):
$\ldots<10 \mathrm{in} / \mathrm{yr} \quad-10-25 \mathrm{in} / \mathrm{yr} \quad X>25 \mathrm{in} / \mathrm{yr}$

Survey Form Ver. 2.1

PART IV: Mapping Your Ground Water Resource

1) Annual volume of water pumped: $81,388,000$ (gallons)

How was this determined?
\Varangle meter
_ estimated: _ pumping rate
_ _ pump capacity (\quad _
__ other: \qquad
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)

6 month ground water travel time :
980
1390
I year ground water travel time :
5 year ground water travel time:
10 year ground water travel time:
Information available on length of screened/open interval?

_ NO
Length of screened/open interval: \qquad 10 (ti)

These are the CFR's (it)
(it)
(it) The District has additional WHPA Captor Zone information for this well, which is attached. The Following questions are answered identified on the WHP
in map.
3) Is there a river, lake, pond. stream, or other obvious surface water body within the 6 month time of travel boundary? \quad YES NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon, or holding pond located within the 6 month time of travel boundary? \qquad YES NO (mark and identity on map).

Comments: \qquad
\qquad
\qquad
\qquad
\qquad

[^0]page 5

PART V: Assessment of Water Quality

1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:
likely pesticide application
6 month 1 year 5 year unknown
stormwater injection wells
other injection wells* see comments
abandoned ground water well
landfills, dumps, disposal areas
known hazardous materials clean-up site
water systems) with known quality problems
population density > 1 house/acre
residences commonly have septic tanks
Wastewater treatment lagoons
sites used for land application of waste

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:

* Well IR hus been used as an injection well as part of a groundwater

 recharge project, with drinking quality water.2) Source speciric water quality records:

Please indicate the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment, MCLs are listed in assistance package.)
A. Nierate: (Nitrate MCL $=10 \mathrm{mg} / \mathrm{h}$)
B. VOCs: (VOC detection level $0.5 \mathrm{ug} / \mathrm{l}$ or $0.0005 \mathrm{mg} / \mathrm{l}$.)

Results greater than MCL or SAL VOCs detected at least once
VOCs never detected
__ VOC sampling records unavailable
C. EDB/DBCP:

YES NO
(EDB MCL $=0.05 \mathrm{ug} / \mathrm{l}$ or $0.00005 \mathrm{mg} / \mathrm{l} . \mathrm{DBCP} \mathrm{MCL}=0.2 \mathrm{ug} / \mathrm{l}$ or $0.0002 \mathrm{mg} / \mathrm{l}$.)
EDB/DBCP detected below MCL at least once EDB/DBCP detected above MCL at least once EDE/DBCP never detected

Results greater than MCL
$<2 \mathrm{mg} / \mathrm{liter}$ nitrate
2-5 mg/iter nitrate
$>5 \mathrm{mg} /$ /iter nitrate
__ Nitrate sampling records unavailable

EDB/DBCP tests required but not yet completed
x EDB/DBCP tests not required
D. Other SOCs (Pesticides):

YES NO
Other SOCs detected (pesticides and other synthetic organic chemicais)
_ Other SOC tests pertormed but none detected
(list test methods in comments
Other SOC tests not performed

If any SOCs in addition to EDB/DBCP were detected. please identify and date. If other SOC tests were performed. but no SOCs detected, list test methods here: \qquad
\qquad
\qquad
\qquad

Survey Form Ver. 2.1
page 7

E. Bacterial contamination:
 YES
 NQ

Any bacterial detection(s) in the past 3 years in samples taken from the source (not distribution sampling records).

Has source (in past 3 years) had a bacteriological contamination problem tound in distribution samples that was attributed to the source.

\qquad Source sampling records for bacteria unavailabie

Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Weilhead Protection Plan for theses sources, a more detailed delineation method should be considered.

1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)

$$
X \text { YES } \quad \text { NO }
$$

Describe with references to map produced in Part IV:
THERE ARE STREANS FLOWING NIO AND OVT OF CAUEHING TACOBS LAKE, AND THE LAKE ITSELF IS IN THE FIVEVEAR BOUIDAEV. THE TEN YEAR BOVHOHR InCLUDES A PORTION OF YELOW LAKE:-THERERGA STEEP RAUNE ASSOCIATED WITHE THE SOUTHWESTEEN EQGE OF THE FIVE AND TEN YEAZ
BOUNDAZ $Z S$
2) Aquiter Material:
A) Does the drilling log, weil \log or other geologic/engineering reports identity that the weil is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?

> _ YES
 NO
B) Does the drilling log, weil log or other geologic/engineering repurts indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and grave!?

3) Is the source located in an aquifer with a high horizontal flow rate? (These can include sources located on flood plains of large rivers, artesian wells with high water pressure, and/or shallow towing weill and springs.)
_ YES
X
NO
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs? ${ }^{(N o}$
a) Presence of ground water extraction wells removing more than approximately $500 \mathrm{gal} / \mathrm{min}$ within...
<6 month travel time
6 month- 1 year travel time
$1-5$ year travel time
YES NO unknown
$-\frac{X}{X}=-$
$-\frac{X}{X}=-$
$-X=$
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...
<1 year travel time *
$1-5$ year travel time
5-10 year travel time

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part iV.

* Well IR has been used as an injection well as part of a ground water recharge project, with drinking quality water.

Suggestions and Comments

Did you attend one of the susceptibility workshops?
Did you find it useful?
X YES
NO
YES
Did you seek outside assistance to complete the assessment?

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.

Be more specific on the CFIR w. WHPA travel -
to indicate that WHPA information ear be used, if available.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SAMMAMISH PLATEAU WELLS 1R \& 2 WHPA CAPTURE ZONES

SYMBOL KEY:
\diamond ZONEIAND SLRFACE WATER MONTOPNG STATIONS
O zOME la MONTOFNG WEL

- zONE IIb MONTORNG WEIL
\triangle ZONEIMONTORINGEEL

6-morith caphure zme 1-year caphra zone 5-year caplre zone 10-year caplure 20 ra

O-3 TOPSOIL, BROWN SAND,GRAVEL, COBBLES,CLAY,SILT
3-17 GRAVEL, BROWN SAND,CLAY

17-23 BROWN SANO, GRAVEL.CLAY
23-25 GRAVEL,SAND,CLAY
25-27 GRAVEL,SANO,CLAY LAYERS
27-70 GRAVEL,SAND,COBBLES,GREY CLAY MINOR SILT

70-80 SANO, GRAVEL, GREY CLAY, MINOR SII.T

80-1 I B PARTIALLY CEMENTEO GRAVEL \& SAND, GREY CLAY,SOME COBBLES, MINOR SILT

118-128 SAND.GRAVEL,COBBLES,CLEAN WATER BEARING

128-138 SAND,GRAVEL, COBBLES, CLAY,SILT,DIRTY

138-143 SANO,GRAVEL,MINOR CLAY, SILT,CLEAN
143-149 GRAVEL,SAND,COBBLES,CLEAN
149-150 GRAVEL,SAND,BLUE CLAY LAYERS 150-159 BLUE CLAY,SILT,SAND
T.D. 1591

Not Used -Provided FY/ only. See WHPA Zones.
Well 18

LEGEND*

KING COUNTY WATER DISTRICT \#82
 WELL \#1 - REPLACEMENT
 CONSTRUCTION AND TESTING

June 1, 1984

SUMMARY

- The decision to replace Well 1 was based on inefficiency which when coupled with a declining water level during summer months reduced its yield to about 200 gpm.
- Well 1 - Replacement (I-R) is capable of sustaining a safe yield of 425 gpm with a specific capacity $\mathrm{Q} / \mathrm{S}=50 \mathrm{gpm} / \mathrm{ft}-$ drawdown.
- Water quality from Well l-R is excellent.
- Well l-R has a 50% greater specific capacity than Well 1.

Well $1-R$ is locatad approximately 15 ft . southeast of Well 1 in the SE1/4 of the NE1/4 of Section 10 T24N RSE.

The contract for drilling was awarded to the low bidder, Armstrong Drilling of Puyallup, Washington. All drilling, construction and testing was done with a 72 Speed Star cable tool drill rig. Drilliny for Well 1-R began February 23, 1984 and continued to a depth of 153 ft . with 12 -inch diameter casing. See Figure 1 for geologic log.

The aquifer, penetrated from $118-149 \mathrm{ft}$. consists of sand, grave1, and cobbles with minor amounts of clay and silt from 128-138 ft. After sieve analysis of the aquifer samples, screen desiyn was prepared and on March 3 the screen assembly was lowered into the well. Design of the screen assembly is shown in Figure 1. The $12-i n c h$ casing was extracted to 137 ft . to expose the screen. After pulling the casing the top of the packer assembly was measured at a depth of 132.1 ft . below ground surface, placing the screened interval at 137-147.1 ft. below ground surface.

A cement surface seal was placed into the annulus between the $10-$ inch diameter surface casing and the 12 -inch diameter pipe, providing a 4 inch annular seal from ground surface to a depth of 33 ft. Initial static water level was 117.8 ft . below ground surface.

Development, using a surge bluck and bailer, initially produced several feet of sand in the bottom of the well, which after 8 hours develoument was reduced to a virtually sand-free condition. After development the static water level was 117.8 ft . below ground surface. On ilarch 13, 1984, a 5-inch diameter line-shaft turbine test pump was installed with the intake at 130 ft . Discharge was to the east into d swampy lowland area. Preliminary
testing resulted in the flow rates and corresponding capacities shown below:

$Q=300 \mathrm{gpm}$	$Q / \mathrm{S}=71 \mathrm{gpm} / \mathrm{ft}-\mathrm{drawdown}$
$Q=400 \mathrm{gpm}$	$Q / \mathrm{S}=67 \mathrm{gpm} / \mathrm{ft}$-drawdown
$Q=500 \mathrm{gpm}$	$Q / \mathrm{S}=59 \mathrm{gpm} / \mathrm{ft}$-drawdown
$Q=500 \mathrm{gpm}$	$Q / \mathrm{S}=53 \mathrm{gpm} / \mathrm{ft}$-drawdown
$Q=747 \mathrm{gpm}$	$Q / S=47 \mathrm{gpm} / \mathrm{ft}$-drawdown

These values are approximate as stabilization of the water level was not achieved for each puriping rate. Initial backwashing produced approxiwately 10 grains/liter of sand.

On March 14, a 6 hour test was run at a flow rate of $\mathcal{Q}=610 \mathrm{gpm}$. The original Well $1,16 \mathrm{ft}$. to the northwest, was used as an observation well during testing. Results of the 6 -hour test are shown in Figures 2 and 3. After 6 hours the drawdown in the pumping well was 12.2 ft . for a specific capacity $Q / S=50 \mathrm{gpm} / \mathrm{ft}-$ drawdown. Drawdown is plotted for the pumping and observation wells in Figure 2. As indicated, aquifer transmissivities of $T=$ $375,000 \mathrm{gpd} / \mathrm{ft}$. and $\mathrm{T}=460,000 \mathrm{gpd} / \mathrm{ft}$. were calculated for the pumping and observation wells respectively. Recovery is plotted for the observation well in Figure 3. This data indicates an aquifer transmissivity of $T=413,000 \mathrm{gpd} / \mathrm{ft}$. Using this value a storage coefficient of $S=0.0003$ was calculated indtcating confined aquifer conditions.

WATER QUALITY

Water quality data for Well $1-R$ is presented on page 10. Results of the analysis by W.M.A. Laboratory meet all D.S.H.S. standards. As reported, the nitrate concentration $N=1.6 \mathrm{mg} / \mathrm{L}$ is higher than previously reported values for well 1 of $0.73 \mathrm{mg} / \mathrm{L}(7 / 25 / 33)$ and $0.3 \mathrm{mg} / \mathrm{L}(8 / 3 / 76)$. A water sample should be analyzed for nitrate in early August 1984 to determine if the nitrate concentration is seasonally variable. Quarterly andlysis for nitrate of the water should be done to evaluate the water quality trend.

```
SAFE YIELD = SAFE DRAWDOWN x SPECIFIC CAPACITY
-. Slaxinuum drawdown level 137 ft. (Top of Screen)
    Static water level ll8 ft. (Ground surface 3/14/34)
Total Available Drawdown 19 ft.
Less Allowances For:
    Seasonal fluctuations _ 6 ft. (Estimated from Figure 4)
Total }\sigma\textrm{ft}
Useable Drawdown = 19-6 = 13 ft.
Available Yield = Useable Drawdown x Specific Capacity
    =13 ft. x 50 ypm/ft-drawdown
    = 650 gpm
A safety factor of 50% or more is desirable as it allows for
unforeseen or unpredictable fluctuations in the water table and
promotes longer well life.
Using a Safe Drawdown = 8.5 ft., gives a Safety Factor =
            useable drawdown - safe drawdown
                                    safe drawdown
    = 13 ft. - 8.5 ft.
    8.5 ft.
    = 53%
    SAFE YIELD = SAFE DRANDOHN x SPECIFIC CAPACITY
    SAFE YIELD = 8.5 ft. }\times50\textrm{gpm}/\textrm{ft}-\textrm{drawdown
    =425 gpm
```

- Well 1-R should be pumped at a maximum rate of 425 gpm , with the pump bowls at 137 ft . below ground surface, and 8 -inch -suction pipe to a depth of 151 ft .
- Water levels and corresponding production rates should be monttore closely with special attention in July and August as higher production rates lower the water level.
- Annual withdrawal from this aquifer should be reduced, with planned reductions during late summer and fall.
- Water quality should be monitored quarterly to establish seasonal fluctuations of nitrate and other indicators of potential contamination.

Prepared by:
J.R. CARR/ASSOCIATES

J. R. Carr

TLit/JRC/vg

ELEV. 465^{\prime}

DEPTH IN FT.

O-3 TOPSOIL, BROWN SAND.GRAVEL. COBGLES,CLAY,SILT
3-17 GRAVEL,BROWN SAND,CLAY

I Y-23 BROWN SANO,GRAVEL.CLAY
23-25 GRAVEL.SAND,CLAY
25-27 GRAVEL,SAND,CLAY LAYERS
27-70 GRAVEL,SAND,COBBLES,GREY CLAY MINOR SILT

70-80 SAND, GRAVEL,GREY CLAY,MINOR SII.

80-118 PARTIALLY CEMENTEO GRAVEL \& SAND, GREY CLAY,SOME COBBLES MINOR SILT

118-128 SANO.GRAVEL,COBBLES,CLEAN WATER EEARING
$128-138$ SAND,GRAVEL,COB8LES, CLAY,SILT,DIRTY

138-143 SAND,GRAVEL,MINOR CLAY, SILT,CLEAN
143-149 GRAVEL,SAND,COBBLES,CLEAN
149-150 GRAVEL,SANO,BLUE CLAY LAYERE
150-159 BLUE CLAY.SILT.SAND
T.D. 1591

1						
\％	1		－	I		
2－			年家	1		
－E\％						
部	8		棓	\circ		
${ }^{\text {\％\％}}$	\bigcirc			8		
				1.8		
	f\％			\％${ }^{\circ}$		
\％	\bigcirc					
	\because					
	Q		${ }^{\circ}$			
				－		
－${ }^{\text {a }}$	－		0			
E．${ }^{\text {cos }}$	－					
				$\stackrel{5}{5}$		
	＋					＋
10	\cdots			新第		
1.						
	＋10					
	\％			$\bigcirc \square^{\circ}$		
	，					
	＊			－		

lase Print Plainly
E HEAVY PENCIL
L- NOT WRITE IN SHADED AREAS

WM A Lab -Tacoma
WATER SAMPLE INFORMATION FOR INORGANIC CHEMICAL ANALYSES
\qquad
If yes, what was the laboratory number of the previous sample? $\quad \ldots-\ldots \ldots \ldots$

REMARKS:
well $1-R$
1330
6hr test at 6006 PM

J.R.Carr/Associates

Tomonone $\frac{12061}{\substack{\text { Cost }}} 851-5562$

LABORATORY REPORT (DO NOT WRITE BELOW THIS LINE)

Environmental Health

WATER FACILITIES INVENTORY（WFI）

Read Instructions on back before completing

FE日 191994
Ans＇d．
d．．．．．

1．SYSTEM MDNO． － 4006	2 COUNTY	$\begin{gathered} \text { GROUP } \\ A \end{gathered}$		WBYA \qquad
3．SYSTEM NANE 				
STREET ADCPESS 1512 22BTH SVE SE． \qquad				
P．O． $30 \times$（F APPLCABLE				
4．OWNEPS NME（AST，FAST） SAMMAMLSHPPEATEAU YATFR \＆				
STREET ADOGESS$151022816 \text { AVF SiF }$				

WFI COMPLETED		THE	
DAY TELEPHON		OATE	
a．SUBMTIED	NEW SYSTEM SYSTEM MANE CHANGE	NO CTANGE UPDATE	AEAGTIVATE Deerte

－OD STSTEA NANE－ENTER ONLY F CHANGONG WITH THIS WT

SYSTEMS SERVING ANY RESIDENTS \｛PEGPLE LIVING IN A

CTY
LSSANUAH

14．NUMBEA NON－PESDENTAL CONNECTO	
SERVED FOR EACH MONTH MAKE ENTRY FOR EACH MONTH	
Wex	
ข voms	
13．DOES THE SYSTEM SERVE AT LEAST 23 OF TOR 4 On MORE OAYS PER WEER FOR AT L ，4H0㴖：别＊ \square YES \square NO －	 H2 Pratmern －－ 5
14，TOTAL MUMEER CONEECTONS MEIEREO 8.844	15．OISTRIBUTION RESERVOAX TOTAL EAPACTY 2entry 203： 12， 850,000 aneons

$$
\because 0.002
$$

$$
0.010
$$

SAFPARISH FLATEAU VATER 8 SEFER DISTRICT \because
HELL
4/YO/E 7/17/E9 7.48

0.010 80.25 0.002 0.010 0.05 0.010 0.010 0.0010 0.005 | 0 |
:---
-

0 n $\begin{array}{r}\text { Y } \\ \vdots \\ \hline\end{array}$ $\stackrel{\square}{-}$ 을

$$
0.25
$$

$$
0.010
$$

$$
0.05
$$

$$
0.010
$$ 7.46

0.010
0.25
0.0 .02
0.010
0.03
0.010
0.026 *0.0010 0.005 0.010 10
48
120 -0. 1 -5.0 $\begin{array}{ll}\text { N } & 0 \\ O & 0 \\ 0 & 0\end{array}$ 0.32
0.010 $\cdot 0.25$ *0.002 0.010 0.05 0.010 0.042 0.0010 0.005 *0.010 * 10 $E 1$: 50 -0. 1 0
n 0.2
$* 0.2$ 10 0.22 *0.010 0.23 * 0.002 응

0 $\cdot 0.05$ $\% 0.010$ 0.041 *0. 0010 *0.005 | 0 |
| :--- | 옹 53 0 $* 0.2$

$* 5.0$ | 0 |
| :--- |
| |
| 0 |
| 0 | 0.2

$\cdot 0.2$ \div 7.23 0.010 0.25 0.002 40.010 $\cdot 0.05$ 0.010 0.010 0.0010 0.005 0.010 10
87 220 0.4 -5.0 -0. 2 0.7
+10 WELL
E/L/E

```
    HELL2
```

$--*-\cdots$

$$
7.06
$$

$$
0100^{\circ} 04
$$

$$
010^{\circ} 0
$$

0.005 0
\vdots
\vdots -10 ㅇ 0.1 $\because 0$ \because $\therefore 0$ PH
Arsenle
Eerium Eerium
Cecrivm chromiun $\stackrel{5}{2}$ tead Vergenese lercury selentum silver sodium tierteess. Concuctivity 2
$\stackrel{2}{-}$
$\stackrel{2}{2}$
\vdots
\vdots Color Fluarlide
 Mitrete
chlorice sulfete

- PCL is the fextrur Contemtrent level altarts PER HILLION WCL is the fexirur Contentrent Level Alteved
Less Then
GAMMAMIBH PLATEAU TATER AND BERER DIBTRICT
WATER BAMPLE INFORMATION FOR INORGANIC CHEMICAL ANALYSIG - 1990

ITEM	WELL 1 $9 / 7 / 90$	TELL 2 $4 / 10 / 89$	$\begin{aligned} & \text { WELL } 4 \\ & 9 / 7 / 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HELL } 5 \\ & 9 / 7 / 90 \end{aligned}$	WELL 6 $9 / 7 / 90$	$\begin{aligned} & \text { WELS } 7 \\ & 9 / 7 / 90 \end{aligned}$	WELL 8 $9 / 7 / 90$	** MCL
pH	6.74 .	7.23	7.26	7.74	7.88	7.29	7.12	
Arsenic	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.05
Barium	<0.25.	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	1.00
Cadmium	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.01
Chromium	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.05
Iron	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.3
Lead	<0.005	<0.0100	<0.005	<0.005	<0.005	<0.005	<0.005	0.05
Manganese	<0.010	<0.0100	<0.039	<0.037	<0.028	<0.010	<0.010	0.05
Mercury	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.002
Belenium	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01
Bilver	<0.010	<0.0100	<0.010	<0.010	<0.010	<0.010	<0.010	0.05
Sodium	≤ 10	<10	<10	<10	<10	<10	<11	
Hardness	79	87	58	58	51	72	72	
Conductivity	85	220	1.50	154	125	189	188	700
Turbidity	<0.2	<0.4000	<0.1	<0.1	<0.2	<0.1	<0.9	1.0
color	<5.0	<5.0	<10.0	<10.0	<5.0	<5.0	<10.	15
Fluoride	<0.2	<0.2000	<0.2	<0.2	<0.2	<0.2	<0.2	2.0
Nitrate	<1.3	<0.7000	<0.2	<0.2	<0.2	<0.2	<1.3	10.0
Chloride	<10	<10	≤ 10	<10	<10	<10	<10	250

PARTB PER MILHION
WATER SAMPLE INFORMATION FOR INORGANIC CHEMICAL ANALYSIS - 1991

ITEM	WELLL 1 $7 / 12 / 91$	$\begin{aligned} & \text { WELL } 2 \\ & 7 / 12 / 91 \end{aligned}$	$\begin{aligned} & \text { WELL } 4 \\ & 7 / 12 / 91 \end{aligned}$	$\begin{aligned} & \text { WELL } 5 \\ & 7 / 12 / 91 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WELL } 6 \\ & 7 / 12 / 91 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WELL } 7 \\ & 7 / 12 / 91 \\ & \hline \end{aligned}$	WELL 8 $7 / 12 / 91$	** MCL
pH	6.6	6.4	7.3	6.7	6.7	7.1		
Arsenic	<0.010	<0.010	<0.010	<0.010	<0.010	$\frac{7.1}{<0.010}$	60.8	
Barium	<0.25	<0.25	<0.25	<0.25	<0.25	$\frac{0.010}{<0.25}$	<0.010	0.05
Cadmium	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.25	1.00
Chromium	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.01
Iron	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Lead	. <0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.3
Manganese	<0.010	<0.010	<0.018	<0.026	<0.023	<0.010	<0.010	0.0
Mercury	<0.0010	<0.010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.05
Selenium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	. 0.02
Silver	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	. 0
Sodium	7.	6.	9.	8	5	10	<0.01	0.0
Hardness	61	66	52	51	43	61	$\underline{12}$	
Conductivity Turbidity	180	270	120	130	120	190	210	
Turbidity	0.2	0.6	. 4	<0.3	12	. 4	210	700
Color	<5.0	<5.0	<5.0	<5.0	<5.0	< 6.4	0.3	1.0
Fiuoride	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<5.	15
Nitrate	1.2	<1.9	1.8	<0.2	<0.2	<0.2	<0.2	
Chloride	<10	<10	<10	<10	21	24	<10	

SAMMAMISH PLATEAU WATER ANND SEWER DISTRICT

ITEM \%	WELET	WELL2/3	WEL4	WELL 5	WELL 6 ,	WELL?	WELL 8	WELL 9	MCL
\% ${ }^{3}$	3-2-93	3-2-93	3-2-93	3-2-93	3-2-93	3-2-93	3-2-93	3-2-93	
Arsenic, \%, , M, ${ }^{\text {a }}$	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05
Barium	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1
Cadmium < ${ }^{\text {a }}$	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.01
	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	0.05
Copper 3 ,	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	1.3
Iron M M M, mimin	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.17	0.3
	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002	< 0.002	0.05
Manganese, \% \% / $/$ KY	< 0.01	<0.01	< 0.043	< 0.041	< 0.092	< 0.01	< 0.01	< 0.01	0.05
	< 0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	0.002
	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.01
	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05
	9.1	9.3	9.0	7.7	8.4	9.5	10.	8.5	
	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	5
	78.	80	65	65	93	79	75	68	
	190	150	160	150	210	190	190	160	700
	0.10	0.49	0.17	0.15	0.1	0.1	0.14	0.43	1
	5.	5.	5.	5.	5.	5.	5.	5.	15
	<20	<20	<20	< 20	< 20	<20	<20	<20	250
Fhooride	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2
Nitraleres. ${ }^{3}$	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.1	< 1.0	10
	<10	< 10	< 10	< 13	< 10	< 10	<10	< 10	250

LEGEND

< Less Than Deleclable Limits
-• Maximum Contaminant Level

GROUND WATER CONTAMINATION
 Susceptibility Assessment Survey Form

SAMMAMISH PLATEAU WATER \& SEWER DISTRICT
 1510 228th Avenue S.E.
 Issaquah, Washington 98027

WELL NO. 2

GROUND WATER CONTAMINATION
 Susceptibility Assessment Survey Form

TABLE OF CONTENTS

- Susceptibility Assessment Survey Form
- Well 2 Asbuilt
- Sammamish Plateau Well 2 WHPA Capture Zones
- Well 2 WHPA Zones - FYI
- Well Log
- Water Facilities Inventory Form
- Inorganic Chemical Analysis 1989-1993

Ground Water Contamination Susceptibility Assessment Survey Form Version 2.1

IMPORTANT!
Please complete one form for each ground water source (well, wellfield, spring) used in your water system. Photocopy as necessary.

PART I: System Information

Well owner/manager : SAMMAMISH PLATEAU WATER Y SEWER DIST.
Water system name: SAMMAMISH PLATEAU WATER F SEWER DIST.
County: \qquad KING

Water system number: 409009
Source number: SOZ
Well depth: \qquad (it.) (From WFI form)
Source name:

$$
\text { NELL } 2
$$

WA well identification tag number: \qquad $-$
\qquad well not tagged
Number of connections: \qquad

Population served:

$$
26,000
$$

Range: \qquad
Section: \qquad
1/4 1/4 Section: \qquad

Latitude/longinude (if available): \qquad 1
How was lat./long. determined?
\qquad ocher:
global positioning device \qquad survey \qquad topographic map
*Please refer to Assistance Packer for details and explanations of all questions in Parts II through V.

PART II:

Well Construction and Source Information

1) Date well originally constructed: "1015,68 monch/day/year
last reconstruction: \qquad
\qquad month/day/year
\qquad information unavailable

> Survey Form Var. 2.1 page :
2) Well driller: $\begin{aligned} & \text { RichARDSON INELL DIRILLING }\end{aligned}$

219 So. 115^{14} ST.
TACOMA KIn. G84UU
\qquad well driller unknown
3) Type of well:

XDrilled: _rotary _bored $X_{\text {cable (percussion) } \quad \text { Dug }}$
_ Other: \qquad pring(s) _ lateral collector (Taney)
\qquad
Additional comments: \qquad
4) Well report available?
 YES (attach copy to form) \qquad NO

If no well log is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: \qquad 360 (gallons/min)
Source of information: WATER FACICITIES INUENTOEY
If not documented, how was pumping rate determined? \qquad
__ Pumping rate unknown.
6) Is this source created? No

If so, what type of treatment:
_ disinfection __ filtration _ carbon tilter __ air stripper _ ocher
Purpose of treatment (describe materials to be removed or controlled by treatment):
7) If source is chlorinated, is a chlorine residual maintained: \square YES \qquad No

Residual level: \qquad (At the point closest to the source.)

```
Survey Form Var. 2.1 page I
```


PART III: Hydrogeologic Information

1) Depth to top of open interval: [check one)
_ < 20 tt , 20-50 t _ $50-100$ it
X $100-200 \mathrm{it} \ldots>200 \mathrm{it}$
information unavailable ('<'means less than; '> 'means greaser than)
2) Depth to ground water (static water level):
—<20 ft $\quad 20-50 \mathrm{ft} \quad X_{50-100 \mathrm{ft}} \quad>100 \mathrm{ft}$
__ flowing well/spring (artesian)
How was water level determined?.
\triangle well \log \qquad other: \qquad
_ depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure: N/A
\qquad psi (pounds per square inch)
or
\qquad feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir. or catchment associated with this source: \qquad YES \qquad NO
λ / A
5) Wellhead elevation (height above mean sea level): 414 (t)

How was elevation determined? _topographic map X Drilling/Well Lug _ altimeter
\qquad other: \qquad
\qquad information unavailable
6) Continuing layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package tor example.)
X
evidence of a confining layer in well log
__no evidence of a confining layer in well \log
It there is evidence of a confining layer. is the depth to ground water more than 20 feer above the top of the open interval?
\qquad information unavailable

> Survey Form Var. 2.1
> page 3
7) Sanitary setback:
\qquad $>200 \mathrm{ft}$

* if less than 100 ft describe the site conditions:

8) Wellhead construction:

wellhead enclosed in a wellhouse controlled access (describe): FENCED T GATED

_ other uses for wellhouse (describe): \qquad

- no wellhead control

9) Surface seal:
— 18 ft
— < 18 ft (no Department of Ecology approval) ('<'means less than)
_ < 18 ft (Approved by Ecology, include documentation) \quad ('<'means less than)

('> 'means greater than)
__ depth of seal unknown
__ no surface seal
10) Annual rainfall (inches per year):
$\ldots<10 \mathrm{in} / \mathrm{yr}$ \qquad $10-25 \mathrm{in} / \mathrm{yr}$

PART IV: Mapping Your Ground Water Resource

1) Annual volume of water pumped: \qquad (gallons)

How was
__ estimated:
_ _ pumping rate \qquad ,
_ pump capacity (
__ other: \qquad
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time :
I year ground water travel time :

5 year ground water travel time:
10 year ground water travel time: 1970

Information available on length of screened/open interval?

\qquad No

Length of screened/open interval: 20 (it)
(tr)
(it) per this packet.
The District has
(ft)
(it) These are the CFR's additional WHPA Capture Zone Information for this well, which B attached. The following questions are answered for the capture zones identified on the WHPA map.
3) Is there a river, lake, pond. stream, or other obvious surface water body within the 6 month time of travel boundary? YES X NO (mark and identify on map).
4) is there a stormwater and/or wastewater facility, treatment lagoon. or holding pond located within the 6 month time of travel boundary? \qquad YES NO (mark and identity on map). Comments: \qquad
\qquad
\qquad
\qquad
\qquad

Survey Form Var. 2.1
page :

PART V: Assessment of Water Quality

1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:
likely pesticide application stormwater injection wells other injection wells* see comments abandoned ground water well landfills, dumps, disposal areas known hazardous materials clean-up site water systems) with known quality problems population density > 1 house/acre residences commonly have septic tanks Wastewater treatment lagoons sites used for land application of waste

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:
Q Well 2 has been used as an injection well as part of a groundwater recharge project, with drinking quality water.
\qquad
\qquad
\qquad
2) Source specific water quality records:

Please indicare the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment, MCLs are listed in assistance package.)
d. Nitrate: (Nitrate MCL $=10 \mathrm{mg} / \mathrm{I}$)

Results greater than MCL
$<2 \mathrm{mg} / \mathrm{lizer}$ nitrate
$2-5 \mathrm{mg} / l i t e r$ nitrate
> $5 \mathrm{mg} /$ iter nitrate
_ Nitrate sampling records unavailable

B. VOCs: (VOC derection level $0.5 \mathrm{ug} / \mathrm{l}$ or $0.0005 \mathrm{mg} / \mathrm{t}$.)

Results greater than MCL or SAL VOCs detected at least once
VOCs never derecred
__ VOC sampling records unavaiiable
C. EDB/DBCP:
(EDB MCL $=0.05 \mathrm{ug} / \mathrm{l}$ or $0.00005 \mathrm{mg} / \mathrm{l}$. DBCP MCL $=0.2 \mathrm{ug} / \mathrm{h}$ or $0.0002 \mathrm{mg} / \mathrm{I}$)
EDB/DACP detected below MCL at least once EDB/DBCP detected above MCL at least once EDB/DBCP never detected

- EDB/DBCP tests required but not yer completed EDB/DBCP rests not required

O. Other SOCS.(Pesticides):	YES NO
Other SOCs detected (pesticides and other synthetic organic chemicals)	-

\qquad Other SOC tests pertiormed but none detected
(list test methods in comments
Other SOC tests not pertormed

If any SOCs in addition to EDB/DBCP were derected, please identify and date. If other SOC tests were pertiormed. but no SOCs detected, list test methods here: \qquad
\qquad
\qquad

[^1]
E. Bacterial contamination:

Any bacterial detections) in the past 3 years in samples taken from the source (not distribution sampling records). \qquad
Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source. \qquad

\qquad Source sampling records for bacteria unavailable

Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution

The following questions will help identify chose ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.

1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)

__ NO
Describe with references to map produced in Part IV:
THEIR ARE STREAMS FEEDING AND EXITING YELLOW LAKE IN THE 5 YEAR CAPTURE ZONE, ALTHOUGH YELLOW LAKE IS OUTSIDE THE CAPTURE ZONE, THERE IS ALSO A- RAVINE LOCATED AT TIE SOUTHERN EDGE OF TIE FIVE AND TEN YEAR CAPTURE ZONES.
2) Aquifer Material:
A) Does the drilling log, weill log or ocher geologic/engineering report identity that the well is located in an area where che underground conditions are identified as fractured rock and/or basalt terrain?
_ YES

B) Does the drilling log, weill log or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?

- NO

Survey Form Var. 2.1
3) Is che source located in an aquifer with a high horizontal tow rate? (These can include sources located on Hood plains or large rivers, artesian wells with high water pressure. and/or shallow flowing wells and springs.)
_ YES
X NO
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs? No
a) Presence of ground water extraction wells removing more than approximately $500 \mathrm{gal} / \mathrm{min}$ within...
<6 month travel time
6 month -1 year travel time
1-5 year travel time
5-10 year travel time
YES NO unknown
$-\geq-$
$-\geq-$
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.

Well 2 has been used as an injection well as part of

 a groundwater recharge project, with drinking quality Water.```
Survey Form Var. 2.1
page \({ }^{9}\)
```


## Suggestions and Comments

| Did you attend one of the susceptibility workshops? | $X$ Yes | NO |
| :---: | :---: | :---: |
| Did you find it useful? | $X$ YES | NO |
| Did you seek outside assistance to complete the assessment? | $X \mathrm{YES}$ |  |

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will heip us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this suscepribility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? . Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Survey Form Ver. 2.1

xater－javisw marnctung


$\angle O G$ OF EXISTING WELL NOZ
－a．日ック
－－swien acher
－
＂anen mannale
$\therefore$ ：：re esual
$\because-$

Y－：t ee c2vac
$\therefore \because$ ：


SAMMAMISH PLATEAU WELIS 1R \& 2 WHPA CAPTURE ZONES


## SYMBCL KEY:

- ZONE I AND SLRRACE WATER MONTORING STATIONS

C ZONE la MONTOXING WEL.

- ZONE 期 MONTCPNGG WEL
$\triangle$ ZONEIVMONTORING WEL.

Ermorth caphirt zone
1-year Gapure zane
5year caplere zone 10-year capture zone


SCALE (MLES)


Not Used -Provide's =Ylanly. See Wutiori Ernes
Sammamish Plateau Water \& Sewer District
Well 2



Applcamon sio.

Parcat: :
 3) Lication or well countr Kizg



Screense Yen moll
Mruutacturatis Fana UPO Johnson




 Trye of witert_-_ Dipth ot arrite Mersod of cealing truts of
(7) PCIMP: eninufecturer Name

$$
\square-\quad-\quad-\quad
$$

(3) H.ATSR LEシvav: static: 62 Lendezurexa diryntion 414
 $t$ selow to of wall nat.
(10) WELL LOG:

|  <br>  |  |  |
| :---: | :---: | :---: |
| [M\% | 720 | 70. |
| Iellow sands e137 |  | 19 |
| Eexicsa | 13 | 6 |
| Costse | 69 | 72 |
| Coarse sand d $11+t 20$ | 7 |  |
| Cobrse eravel \& sand |  |  |
| Haptpen | 78 |  |
| ilght trown hartoan |  |  |
| Coarso atad \& gatel Yatar |  | 101 |
| Cospre ind \& Eramel | 101 | 102 |
| Clay costad sand \& erirri $\because \because$ | 102 |  |
| Large mfarral f coarso sand $\because$ | 10 |  |
| Large cravel a cosrse sand y | 11 |  |
| Coarso ind \& Ilttle arand Coarse sand s littio jes cratel | 11 |  |
|  | 113 | -119 |
| Coarse sand \& Ilttie starel Coarse sand a come erarel | 112. | 122 |
|  | 122 |  |
| clay coaked sand \& erevel : | -126 |  |
| $\frac{1}{2}+x^{2}$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| - |  |  |
|  |  |  |
| ¢- |  |  |
| $\square \cdots \cdots$ |  |  |
|  | $\square_{1}=2$ | FFis |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| - - |  |  |
| -2. |  |  |
| -1- $\therefore$ - |  | - |
|  |  |  |
|  |  |  |
|  |  |  |

WELL DRILIERS STATEMENT:
This well was drilled under my furisdiction and this report is true to the best of my knowledgo and beliet.
 (Person, tirm or corporation

(siqed $\angle \mathrm{Li}$,
Litense No 223-7206500 . Date October 30, 60




,
+ース
STATE OF WASIIINGTON
IPARTMENT OF CONSEIGYATION

 Uwner.... King County Water District No. 121 , 19................

Matcaial

Wateh hesuunces 1.................................... ..................................................
I.Aud suriace, dalum..4.44....................................................

SWL.:...62..f.t.... Datect.ober...10........., 1968... Dims..12"..............

| $\begin{gathered} \text { Cunat } \\ \text { LAloan } \end{gathered}$ | Matranal | From (feel) |  |
| :---: | :---: | :---: | :---: |



Environmental Health
WATER FACILITIES INVENTORY (WFI)

Read Instructions on back before completing
 119 UTEO
FE日 1 1994
Ansid.


| WFI COMPLETEO AY MTE |  |
| :---: | :---: |
| OAY TELEPMONE | OATE |
|  |  |
| 'OLD SYSTEM NAME - ENTER ONEY F CHANGNG WTTH TMIS WR |  |
| SYSTEMS SERVING ANY RESIGENTS \{PEOPLE L:UING IN A twfiLung senved ay The system], complete This section |  |
| 9. MMAEER ACTINE RESTDENTAL comanctrans $\therefore-784$ | 1a. Numben ACTVE RESIDENTLAL mopleation $\text { 4 } 25 \cdot 647 \div$ |
| SYSTEMS SERVING ANY NON-RESIDENTS IIE, TRAVELEAS, EMPLOYEES, STUDENTS, ETC., COMPLETE THIS SECTION |  |
| i1, NUMEER NON-PE STOENTRAL CONNECTIONS |  |
| t2 ENTEA AVERAGE DALY NONAESIDENTAL PCFULATION SENVED FOR EACH MONTH MUKE ENTRY FOR EACH MONTH |  |
|  |  |
| 12. DOES THE STSTEM SEFVE AT LEAST 23 OF THE SANE NONHESCONTS FOR 4 OA MOAT DAYS PER WEDX FOR AT LEAST taO OAYS PEA YEART |  |
| 14. TOTAL NUMEEFA CONNECTIONS METERED $\text { R. } 944$ | 15. DISTA: (ITION RESERVCR(S) TDTAL CAPACITY <br> $\therefore 12.850,000$ amons |



$$
\left.\begin{array}{llllllllll}
n & 0 & - & n & n & n & n & N & - & 0 \\
0 & n & n & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{N} \\
& \underset{O}{0}
\end{aligned}
$$

$$
\because
$$

$$
0.010
$$

$$
0.010
$$

$$
0.0010
$$

$$
0.010
$$

$$
0.0010
$$

$$
0.005
$$

$$
10
$$

$$
63
$$

$$
160
$$

$$
\begin{aligned}
& \text { N } \\
& 0 \\
& 0
\end{aligned}
$$

$$
0
$$

$$
0.00 \cdot 10
$$

$$
0.005
$$

$$
\text { - } \mathrm{HCL}
$$

$$
\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & \therefore & 0 & 0 \\
i
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\stackrel{0}{2}
$$

응

$$
0
$$

$$
\begin{aligned}
& \text { 을 } \\
& e
\end{aligned}
$$

$$
0
$$

$$
0
$$

$$
0
$$

$$
0.010
$$

$$
0.010
$$

$$
0.005
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

을

$$
\underset{\infty}{\infty}
$$

$$
\begin{aligned}
& \underset{\sim}{0} \\
& \hdashline
\end{aligned}
$$

을

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\because 8
$$

$$
\begin{array}{ll}
N \\
0 & = \\
0
\end{array}
$$

JER

$$
\begin{aligned}
& \text { pH } \\
& \text { Areenle }
\end{aligned}
$$

pH
Eerlum

$$
C_{e} C_{\pi} I_{m}
$$

Chremiun
Iren
teed

$$
\begin{aligned}
& \text { Pergenese } \\
& \text { lercury } \\
& \text { selentum }
\end{aligned}
$$

sitiver
sodium
Fitreress
Conductivity Turbidity Color
Fluorlde
Mifrete
chlorte chlorte
sulfefe
AnTest/A-h
HRTER SAMFLE INF CFPATICN FOR INOFEANIC CEEPICAL APALYSES - ISE9

$$
\begin{aligned}
& \text { NELE ! } \\
& E / 4 / E ?
\end{aligned}
$$

$$
\begin{aligned}
& 7.05 \\
& * 0.010
\end{aligned}
$$

$$
0.25
$$

$$
0.002
$$

$$
* 0.010
$$

$$
0.010
$$

$$
0.0010
$$

$$
155
$$

$$
0.1
$$

$$
5.0
$$

$$
0.010
$$

$$
0.05
$$

$$
220
$$

$$
0.4
$$

$$
5.0
$$

$$
\cdot 0.7
$$

SAFPGISH FLATEAU : ATER \& SEFER DISTRICT

$$
\begin{array}{ll}
\text { HELL2 } \\
\text { 4/10/E9 } & \text { RELL } \\
\end{array}
$$

$$
7.23
$$

$$
\begin{aligned}
& 0.25 \\
& 0.002
\end{aligned}
$$

$$
8.22
$$

$$
0.010
$$

$$
0.25
$$

$$
0.002
$$

$$
0.010
$$

$$
0.03
$$

$$
0.041
$$ -HCL is the fextrum Contemirent tevel alioneds PER MJLIION -tess Then

$$
\begin{aligned}
& \text { KELL } 7 \\
& 7 / 17 / E 9
\end{aligned}
$$

$$
\begin{aligned}
& 7.48 \\
& =0.010 \\
& 0.0 .25 \\
& 00.002 \\
& 0.010 \\
& 0.05 \\
& 0.010 \\
& 0.010
\end{aligned}
$$

$$
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\therefore
$$


GAMMAMISH PLATEAU WATER AND SEWER DIBTRICT
HATER BAMPLE INFORMATYON FOR INORGANIC CHEMICAL ANALYBIB - 1990

WATER SAMPL!E INFORMATION FOR INORGANIC CHEMICAL ANALYSIS - 1991

| 1TEM | $\begin{aligned} & \text { WELL } 1^{\circ} \\ & 7 / 12 / 91 \end{aligned}$ | WELL 2 $7 / 12 / 91$ | WELL 4 $7 / 12 / 91$ | WELL 5 $7 / 12 / 91$ | $\begin{aligned} & \text { WELLL } 6 \\ & 7 / 12 / 91 \end{aligned}$ | WELL 7 $7 / 12 / 91$ | WELL 8 $7 / 12 / 91$ | ** MCL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PII | 6.6 | 6.4 |  |  |  |  |  |  |
| Arsenic | $<0.010$ | <0.4 | $\frac{7.3}{<0.010}$ | $\frac{6.7}{<0.010}$ | 6.7 | 7.1 | 6.8 |  |
| Barium | $<0.25$ | $<0.25$ | <0.010 | $<0.010$ | $<0.010$ | $<0.010$ | $<0.010$ | 0.05 |
| Cadmium | $<0.002$ | $<0.002$ | $<0.002$ | $<0.25$ | $<0.25$ | $<0.25$ | $<0.25$ | 1.00 |
| Chromium Iron | $<0.010$ | $<0.010$ | $<0.010$ | $<0.002$ | $<0.002$ | $<0.002$ | $<0.002$ | 0.01 |
| Iron | $<0.05$ | $<0.05$ | <0.01 | $<0.010$ | $<0.010$ | $<0.010$ | $<0.010$ | 0.05 |
| $\frac{\text { Mead }}{\text { Manganese }}$ | $<0.005$ | $<0.005$ | <0.005 | $<0.05$ | $<0.05$ | $<0.05$ | $<0.05$ | 0.3 |
| Manganese | $<0.010$ | $<0.010$ | $<0.018$ | $<0.026$ | $<0.005$ | $<0.005$ | $<0.005$ | 0.05 |
| Mercury | $<0.0010$ | $<0.010$ | $<0.0010$ | $<0.026$ | $<0.023$ | $<0.010$ | $<0.010$ | 0.05 |
| Selenium | $<0.005$ | $<0.005$ | $<0.005$ | $<0.0010$ | <0.0010 | $<0.0010$ | $<0.0010$ | 0.002 |
| Silver | <0.010 | <0.010 | $<0.010$ | $<0.010$ | $<0.005$ | <0.005 | $<0.005$ | 0.01 |
| Mardness | 7. | 6. | 9. | 8 | - 5 | $<0.010$ | $<0.010$ | 0.05 |
| Cordness | 61 | 66 | 52 | 51 | 43 | 10 | 12 |  |
| Conductivity | 180 | 270 | 120 | 130 | 120 | 61 | 75 |  |
| Color | 0.2 | 0.6 | . 4 | $<0.3$ | $\frac{120}{3}$ | 190 | 210 | 700 |
| Fluoride | $<5.0$ | $<5.0$ | $<5.0$ | $<5.0$ | $<5.0$ | . 4 | 0.3 | 1.0 |
| Nitrate | $<0.2$ | $<0.2$ | $<0.2$ | $<0.2$ | $<0.2$ | $<5.0$ | $<5$. | 15 |
| Chloride | 1.2 | $<1.9$ | 1.8 | $<0.2$ | $<0.2$ | $<0.2$ | <0.2 |  |
|  | $<10$ | $<10$ | $<10$ | $<10$ | 21 | 24 | 1.3 |  |

SAMMAMISH PLATEAU WATER AÑD SEWER DISTRICT

| ITEM | WELL 1 $2 / 14 / 92$ | WELL 2 $2 / 14 / 92$ | WELL 4 $2 / 14 / 92$ | $\begin{aligned} & \text { WELL } 5 \\ & 2 / 14 / 92 \end{aligned}$ | WELL 6 $2 / 14 / 92$ | $\begin{aligned} & \text { WELL } 7 \\ & 2 / 14 / 92 \end{aligned}$ | WELLL 8 $7 / 12 / 91$ | ** HCL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pH | 7.0 | 7.3 | 7.93 |  |  |  |  |  |
| Arsenic | $<0.010$ | <0.01 | $<0.01$ | <0. 0.4 | 8.4 | 7.7 | 6.8 |  |
| Barium | $<0.1$ | $<0.1$ | $<0.01$ | <0.0.1 | $<0.01$ | $<0.01$ | <0.010 | . 05 |
| Cadmium | $<0.002$ | $<0.002$ | $<0.002$. | $<0.1$ | <0.1 | $<0.1$ | $<0.25$ | 1.00 |
| Chromium | $<0.05$ | $<0.05$ | $<0.05$ | $<0.002$ | $<0.002$ | $<0.002$ | <0.002 | 0.01 |
| $\underline{1}$ ron | $<0.05$ | $<0.05$ | $<0.05$ | $<0.05$ | <0.05 | $<0.05$ | <0.010 | 0.05 |
| Lead | <0.002 | $<0.002$ | $<0.0025$ | $<0.05$ | 0.37 | <0.05 | $<0.05$ | 0.3 |
| Manganese | $<0.01$ | $<0.01$ | 0.043 | $<0.041$ | <0.002 | $<0.002$ | <0.005 | 0.05 |
| Hurcury | $<0.0002$ | <0,0002 | $<0.0002$ | $<0.041$ | $\frac{0.038}{<0.0002}$ | $<0.01$ | <0.010 | 0.05 |
| Selonium | $<0.005$ | $<0.005$ | $<0.005$ | $<0.0002$ | <0.0002 | $<0.0002$ | <0. 0010 | 0.002 |
| Silver | <0.01 | <0.01 | $<0.01$ | $<0.005$ | $<0.005$ | $<0.005$ | <0.005 | 0.01 |
| Sodium | 9.5 | 6.1 | 8.7 | 8.01 | <0.01 | <0.01 | <0.010 | 0.05 |
| Harduess | 85. | 75 | 62 | 62 | 4.8 | 10 | 12 |  |
| Couductivity | 180. | 150 | 140 | 140 | $\underline{56}$ | 79 | 75 |  |
| Turdidity | 0.46 | 0.42 | . 33 | 0.32 | $\underline{120}$ | $\xrightarrow{170}$ | 210 | 700 |
| Color | $<5.0$ | $<5.0$ | $<5.0$ | $<5.0$ | $<5.0$ | - 3.32 | 0.3 | 1.0 |
| Fluoride | $<0.5$ | <0.5 | $<0.5$ | $<0.5$ |  | $<5.0$ | $<5$. | 15 |
| Nitrate | 1.0 | $\leq 1.8$ | $<1.0$ | $<1.0$ | $<1.0$ | $<0.5$ | $<0.2$ | 2 |
| Chlogide | $<20$. | $<20$ | $<20$ | $<20$ | <20 | $<1.0$ | 1.3 | 10 |
| Sultate | 10. | $<10$. | $<10$. | $<10$ | $<10$ | $<20$ | $<10$ | 250 |
| coppur | $<0.02$ | $<0.02$ | <0.02 | $<0.02$ | $<10$ | 11 |  | 250 |
| tiac | $<0.05$ | $<0.05$ | <0.05 | $<0.05$ | $<0.02$ | $<0.02$ |  | 1.0 |
| Al ишнinuи | $<5.0$ | $<5.0$ | <5.0 | $<5.0$ | $<0.05$ | $<0.05$ |  | 5.0 |
| Calcium | 19. | 18. | 18 | 18 | 16 | $<5.0$ |  |  |


| ITEM | WELL 1 | WELL2, | WELT4 | WELL 5 | WELL 6 as | WELL 7 | WELL 8 | WELL 9 | ${ }^{*} \mathrm{MCL}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3-2-93 | 3-2-93 | 3-2-93 | 3-2-93 | 3-2-93 | 3-2.93 | 3-2-93 | 3-2.93 |  |
| Arsenic | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.05 |
| Barium"..... | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |  |
| Cadmium ख] | $<0.002$ | < 0.002 | < 0.002 | < 0.002 | <0.002 | $<0.002$ | < 0.002 | < 0.002 | , 0.01 |
|  | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.05 |
|  | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | 1.3 |
|  | < 0.05 | $<0.05$ | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.17 | 0.3 |
| Lead ${ }^{\text {a }}$, ${ }^{\text {a }}$ | <0.002 | < 0.002 | $<0.002$ | $<0.002$ | < 0.002 | < 0.002 | < 0.002 | < 0.002 | 0.05 |
| Manganese inisfe | < 0.01 | < 0.01 | < 0.043 | $<0.041$ | < 0.092 | < 0.01 | < 0.01 | < 0.01 | 0.05 |
| Mercury : ${ }^{\text {a }}$, S ¢ | < 0.0002 | < 0.0002 | < 0.0002 | $<0.0002$ | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | 0.002 |
|  | $<0.005$ | < 0.005 | < 0.005 | $<0.005$ | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.0 |
|  | -0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | $<0.01$ | < 0.01 | < 0.01 | 0.0 |
|  | 9.1 | 9.3 | 9.0 | 7.7 | 8.4 | 9.5 | 10. | 8.5 |  |
|  | < 0.05 | < 0.05 | < 0.05 | $<0.05$ | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 5 |
| llardness | 78. | 80 | 65 | 65 | 93 | 79 | 75 | 68 |  |
| Conductivily M , ${ }^{\text {a }}$ | 190 | 150 | 160 | 150 | 210 | 190 | 190 | 160 | 700 |
|  | 0.10 | 0.49 | 0.17 | 0.15 | 0.1 | 0.1 | 0.14 | 0.43 | 1 |
|  | 5. | 5. | 5. | 5. | 5. | 5. | 5. | 5. | 15 |
|  | $<20$ | < 20 | < 20 | < 20 | < 20 | < 20 | $<20$ | < 20 | 250 |
| Fluoride, \% , प4. | < 0.5 | < 0.5 | $<0.5$ | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 2 |
|  | $<1.0$ | $<1.0$ | < 1.0 | < 1.0 | < 1.0 | < 1.0 | < 1.1 | < 1.0 | 10 |
| Sulfate ${ }^{\text {ar }}$ | $<10$ | < 10 | < 10 | < 13 | < 10 | < 10 | < 10 | < 10 | 250 |

# GROUND WATER CONTAMINATION <br> Susceptibility Assessment Survey Form 

SAMMAMISH PLATEAU WATER \& SEWER DISTRICT 1510-228 ${ }^{\text {TH }}$ Avenue SE<br>Sammamish, Washington 98075<br>(425) 392-6256

## WELL 2.2

# GROUND WATER CONTAMINATION <br> Susceptibility Assessment Survey Form 

TABLE OF CONTENTS
> Susceptibility Assessment Survey Form
$>$ Well 2.2 Calculated Fixed Radius - FYI
$>$ Water Well Report
$>$ Well 2.2 Hydrogeologic Log and Construction Details
$>$ Wellhead Protection Program for Plateau and Cascade View Well Report Information

- Aquifer Zone II definition
- WHPAs and Potential Contaminants
- Figure 4.1 - WHPA Capture Zones
$>$ Water Sample Tests
- Water Bacteriological Analysis - 5/21/96
- Inorganic Chemical Analysis - 5/21/96
- Water Sample Information for Radiation Chemical Analyses - 5/21/96
- ICP Metals - 5/21/96


## Ground Water Contamination Susceptibility Assessment Survey Form <br> Version 2.2

IMPORTANT! Please complete one form for each ground water source (well, well field, spring) used in your water system. Photocopy as necessary.

PART I: System Information
Well owner/manager: Sammamish Platean Water \& Sewer District
Water system name: _ Sammamish Plateau Water \& Sewer District
County: King
Water system number: 409009
Source number: $\qquad$

Well depth: $\qquad$ 180 (ft.) (From WFI form)

Source name: $\square$ Well 2.2

WA well identification tag number: $\qquad$ AAD383
$\qquad$ well not tagged

Number of connections: $\qquad$ 14358 Population served: $\qquad$
Township: $\qquad$ Range: 06E
1/4 1/4 Section: NW/SW

Latitude/longitude (if available): $\qquad$ 1

How was lat./long. determined?
$\qquad$ global positioning device $\qquad$ survey $\qquad$ topographic map __ other: $\qquad$

* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V.

PART II: Well Construction and Source Information

> 1) Date well originally constructed: $05 / 09 / 96$ month/day/year last reconstruction: $\quad 1 / 1$ month/day/year information unavailable
2) Well driller: Holt Drilling, Inc. $\qquad$
$\qquad$ well driller unknown
3) Type of well:

```
X Drilled: __ rotary __bored X cable (percussion) __Dug
__Other: __ spring(s) __ lateral collector (Ranney)
 __driven __jetted __ other:
```

Additional comments: $\qquad$
4) Well report available? $\mathbf{X}$ _YES (attach copy to form) ___NO

If no well log is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: $\qquad$ 500 (gallons/min)

Source of information: Recharge/Production Well 2.2 Construction and Testing Report
If not documented, how was pumping rate determined? $\qquad$
$\qquad$ Pumping rate unknown
6) Is this source treated?

If so, what type of treatment:
__disinfection $\mathbf{X}$ filtration __ carbon filter __ air stripper $\underline{\mathbf{X} \text { other }}$
Purpose of treatment (describe materials to be removed or controlled by treatment):
The water is chlorinated and filtered to remove Manganese. The water is also treated
with sodium hydroxide ( NaOH ) for corrosion control.
7) If source is chlorinated, is a chlorine residual maintained: $\qquad$ YES $\qquad$ NO

Residual level: minimum 0.3ppm free after the filters (At the point closest to the source.)

## PART III: Hydrogeologic Information

1) Depth to top of open interval: [check one]

$$
\ldots<20 \mathrm{ft} \ldots 20-50 \mathrm{ft} \ldots 50-100 \mathrm{ft} \text { X } 100-200 \mathrm{ft} \ldots>200 \mathrm{ft}
$$

_ information unavailable ('<' means less than; $>$ ' means greater than)
2) Depth to ground water (static water level):
$\ldots<20 \mathrm{ft} \ldots 20-50 \mathrm{ft}$ X $50-100 \mathrm{ft} \ldots>100 \mathrm{ft}$
__ flowing well/spring (artesian)
How was water level determined?
X well $\log$ _ other: $\qquad$
__ depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure:
$\qquad$ psi (pounds per square inch)
or
$\qquad$ feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir, or catchment associated with this source: YES _ NO
5) Wellhead elevation (height above mean sea level): $\qquad$ (ft)

How was elevation determined?
X topographic map $\qquad$ Drilling/Well Log $\qquad$ altimeter
$\qquad$ other: $\qquad$
$\square$ information unavailable
6) Confining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)
$\underline{X}$ evidence of a confining layer in well log
no evidence of a confining layer in well log
If there is evidence of a confining layer, is the depth to ground water more than 20 feet above the bottom of the lowest confining layer? $\qquad$ YES $\qquad$ NO
$\qquad$ information unavailable
7) Sanitary setback:
$\qquad$ $<100 \mathrm{ft}^{*}$ X $100-120 \mathrm{ft} \quad 120-200 \mathrm{ft}$ $\qquad$ $>200 \mathrm{ft}$

* if less than 100 ft describe the site conditions:

The well is drilled approximately 68 feet from the eastern property line, which is the right of way line of Beaver Lake Drive. However, the roadway was relocated and the ditchline and roadbed are more then 100 feet from the well.
8) Wellhead construction:

X wellhead enclosed in a well house
$\underline{X}$ controlled access (describe): The well is locked in a shelter that is monitored.
__ other uses for well house (describe): $\qquad$
__ no wellhead control
9) Surface seal:
_ 18 ft
$\ldots<18 \mathrm{ft}$ (no Department of Ecology approval)
('<' means less than)
$\qquad$ $<18 \mathrm{ft}$ (Approved by Ecology, include documentation)
$\underline{\mathrm{X}}>18 \mathrm{ft}$
('<' means less than)
__ depth of seal unknown
$\qquad$ no surface seal
10) Annual rainfall (inches per year):

$$
\ldots<10 \mathrm{in} / \mathrm{yr} \quad ـ^{10-25 \mathrm{in} / \mathrm{yr} \underline{X}>25 \mathrm{in} / \mathrm{yr}}
$$

## PART IV: Mapping Your Ground Water Resource

1) Annual volume of water pumped: $\quad 261,000,000$ (gallons)

How was this determined?
__meter
$\qquad$
_ _ pump capacity ( $\qquad$
X other: Water rights
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time:
1,390
(ft)
1 year ground water travel time:
1,970
5 year ground water travel time:
4,400
10 year ground water travel time:
6,220
Information available on length of screened/open interval?
X YES $\qquad$ NO

Length of screened/open interval: $\qquad$ 25

These are the CFR's per this packet. The District has additional Well Head Protection Area (WHPA) Capture Zone information, which is attached. The following questions are answered for the capture zones identified on the WHPA map.
3) Is there a river, lake, pond, stream, or other obvious surface water body within the 6 -month time of travel boundary? $\mathbf{X}$ YES __NO (mark and identify on map).

There are two wetlands located on the Well $\mathbf{2 . 2}$ property. One wetland is approximately $\mathbf{1 2 0}$-feet to the northwest and the other approximately $\mathbf{6 0}$-feet to the southeast.
4) Is there a storm water and/or wastewater facility, treatment lagoon, or holding pond located within the 6 -month time of travel boundary? $\qquad$ YES $\qquad$ NO (mark and identify on map).

Comments: Septic Systems serve the homes to the north of SE $32^{\text {nd }}$ Way and west of Beaver
Lake Drive and are within the 6-month time of travel boundary. Gravity sewers serve the areas to the south of SE 32 ${ }^{\text {nd }}$ Way and east of Beaver Lake Drive.

## PART V: Assessment of Water Quality

1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:

|  | 6 month | 1 year | 5 year | unknown |
| :--- | :---: | :---: | :---: | :---: |
| likely pesticide application |  |  |  | $\mathbf{X}$ |
| stormwater injection wells | No | No | No |  |
| other injection wells (see comments) | No | No | No |  |
| abandoned ground water well |  |  |  | $\mathbf{X}$ |
| landfills, dumps, disposal areas | No | No | No |  |
| known hazardous materials clean-up site | No | No | No |  |
| water system(s) with known quality problems |  |  |  | X |
| population density > 1 house/acre |  | 4 house /acre |  |  |
| residences commonly have septic tanks | Yes | No | No |  |
| Wastewater treatment lagoons | No | No | No |  |
| sites used for land application of waste | No | No | No |  |

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:

Well 2.1 has been used as an injection well as part of a groundwater recharge project.
System, or domestic, water was used in the proiect.

Septic systems serve the homes to the north of SE $\mathbf{3 2}^{\text {nd }}$ Way and west of Beaver Lake
Drive.
2) Source specific water quality records:

Please indicate the occurrence of any test results since 1986 that meet the following conditions (Unless listed on assessment, MCLs are listed in assistance package):

| A. Nitrate: (Nitrate MCL $=10 \mathrm{mg} / \mathrm{l}$ ) | YES | NO |
| :---: | :---: | :---: |
| Results greater than MCL |  | X |
| $<2 \mathrm{mg} / \mathrm{liter}$ nitrate | X |  |
| $2-5 \mathrm{mg} / \mathrm{liter}$ nitrate |  | X |
| $>5 \mathrm{mg} / \mathrm{liter}$ nitrate |  | X |
| Nitrate sampling records unavailable |  | $\mathbf{X}$ |
| B. VOCs: (VOC detection level $0.5 \mathrm{ug} / 1$ or $0.0005 \mathrm{mg} / \mathrm{l}$.) | YES | NO |
| Results greater than MCL or SAL |  | X |
| VOCs detected at least once |  | X |
| VOCs never detected | X |  |
| VOC sampling records unavailable |  | $\mathbf{X}$ |
| C. EDB/DBCP: | YES | NO |
| (EDB MCL $=0.05 \mathrm{ug} / \mathrm{l}$ or $0.00005 \mathrm{mg} / \mathrm{l}$. $\mathrm{DBCP} \mathrm{MCL}=0.2 \mathrm{ug} / \mathrm{l}$ or $0.0002 \mathrm{mg} / \mathrm{l}$.) |  |  |
| EDB/DBCP detected below MCL at least once |  | X |
| EDB/DBCP detected above MCL at least once |  | X |
| EDB/DBCP never detected |  | X |
| EDB/DBCP tests required but not yet completed |  | X |
| EDB/DBCP tests not required | X |  |
| D. Other SOCs (Pesticides): | YES | NO |
| Other SOCs detected |  | X |
| (pesticides and other synthetic organic chemicals) |  | X |
| Other SOC tests performed but none detected * (list test methods in comments) |  | X |
| Other SOC tests not performed | $\mathbf{X}$ |  |

If any SOCs in addition to EDB/DBCP were detected, please identify and date. If other SOC tests were performed, but no SOCs detected, list test methods here:

Any bacterial detection(s) in the past 3 years in samples taken from the source (not distribution sampling records).


Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source. $\qquad$
Source sampling records for bacteria unavailable

## Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.

1) Is there evidence of obvious hydrologic boundaries within the 10 -year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)

$$
\underline{\mathbf{X} \quad \mathrm{YES}} \quad \text { NO }
$$

Describe with references to map produced in Part IV:
There are streams feeding and discharoing from Yellow Lake, in the 5 year capture zone,
although Yellow Lake is ontside the capture zone. There is also a ravine located at the
southern edge of the five and ten year capture zones.

## 2) Aquifer Material:

A) Does the drilling log, well log or other geologic/engineering reports identify that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?

$$
\text { _ YES } \quad \mathbf{X} \text { NO }
$$

B) Does the drilling log, well log or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?
X_YES
$\qquad$ NO
3) Is the source located in an aquifer with a high horizontal flow rate? (These can include sources located on flood plains of large rivers, artesian wells with high water pressure, and/or shallow flowing wells and springs.)

4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs?

a) Presence of ground water extraction wells removing more than approximately $500 \mathrm{gal} / \mathrm{min}$ within...

|  | YES | NO | unknown |
| :--- | :--- | :--- | :--- |
| < 6 month travel time <br> 6 month-1 year travel time <br> $1-5$ year travel time <br> $5-10$ year travel time |  | $\mathbf{X}$ | - |
|  |  | - | - |

b) Presence of groundwater recharge wells (dry wells) or heavy irrigation within...
< 1 year travel time 1-5 year travel time 5-10 year travel time


Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.

## The Wellhead Protection Prooram for Plateau and Cascade View Wells Report prepared in

June 24, 1998 for the Sammamish Plateau Water \& Sewer District discussed the ground water
flow for the Plateau Area wells. The ground water flow directions within each aquifer were
evaluated using static water levels from well completed within the aquifers. Well $\mathbf{2 . 2}$ is in
aquifer zone II, which is made up of three subzones: IIa, IIb, and IIc. The top of zone II
occurs at elevations of approximately $\mathbf{3 5 0}$ to 160 feet above MSL. Zone II thickness ranges
from 5 to 150 feet. A potentiometer surface map for wells completed in Zone II shows that
ground water flow is generally to the northwest or northeast direction.
The WHPA for aquifer zone II is attached and is used to answer the questions in this survev.

## Suggestions and Comments

Did you attend one of the susceptibility workshops?
Did you find it useful?
Did you seek outside assistance to complete the assessment?


This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additiona//outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.

## Sammamish Plateau Water and Sewer District

 Well 2.2"Calculated Fixed Radius" Water Travel Times FOR INFORMATION ONLY (WHPA USED FOR ANALYSIS)


Scale: 1" $=2,000^{\prime}$
Ground Water Travel Times shown:
6 month, 1 year, 5 year and 10 year


 ———
 WELL COMSTRUCTOR CERTIFICATION:

| I construoted and/or socept respomarinity for construction and tis compliance with all Washiagion well conetructio Matarial used and the information raported thowe are true knowledee and belliol. <br> mave Folt Ded11ing $\qquad$ 10521 Todd Foad East |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
| $\text { Pardog } / 1 /$ |  |  |  |
| Comernotors <br> Recintration <br> Mo.jitriate 6T105 <br> Date $\qquad$ |  |  |  |
|  |  |  |  |

(USE ADDITIONAL SHEETS F NECESSARY)

Garma/Permeebility Logs Construction Details . Lithologic Log

completed in three of the four aquifers that lie beneath the Plateau Upland: Zones II, III, and IV.

## Aquifer Zone II - Plateau Wells 1R, 2, 10, and Proposed Wells 2.2, 15, and 16

- Aquifer Zone II transmissivity ranges between 5,000 and 300,000 gallons per day per foot (gpd/ft), and thickness ranges between 5 and 150 feet.
- The aquifer system is bounded by the Plateau margins to the north, east, and west, and a bedrock boundary exists to the south and southeast of the North Fork Channel.
- The central portion of the Plateau near the North Fork receives most of the recharge. The general direction of ground water flow in Aquifer Zone II is northward between District Wells 10 and 15. North of District Well 10, ground water flows east and west toward the Plateau margins.
- The hydraulic gradient in Aquifer Zone II is approximately 0.001 to 0.002 between District Wells 10 and 15.


## Aquifer Zone III Plateau Wells 6 and 11.1

- Aquifer Zone III transmissivity ranges between 11,000 and $45,000 \mathrm{gpd} / \mathrm{ft}$, and thickness ranges between 20 and 100 feet.
- Data are insufficient to determine aquifer boundaries; however, it is likely the aquifer is bounded by bedrock to the south near the North Fork Channel.
- The aquifer is recharged in the central portion of the Plateau. The direction of ground water flow is away from the north-south ground water divide and appears to be eastward in the vicinity of Well 11.1. At Well 6, ground water flows to the west.
- The hydraulic gradient in Aquifer Zone III is approximately 0.001 eastward at Well 11.1 and approximately 0.003 westward at Well 6.


## Aquifer Zone IV Plateau Wells 4, 5, and 11.2

- Aquifer Zone IV transmissivity ranges between 14,000 and 42,000 gpd/ft, and thickness ranges between 90 and 200 feet.


### 4.3.3 Additional Data Needs

To maintain the inventory of potential sources of contamination, the following data need to be collected and included during future risk analysis updates:

- Status of previously identified potential contamination sources
- New potential contamination sources


### 4.4 WHPAS AND POTENTIAL CONTAMINANTS

Figures 4.1 through 4.6 show the WHPAs delineated for the District's production wells and the location of potential contaminant sources. Each WHPA and the risk from potential contaminant sources are described in the following sections.

### 4.4.1 Plateau Aquifer Zone II

WHPAs for District Wells 1R, 2.1, 2.2, 10, 15, and 16 are contiguous, so they were evaluated as one well field; the composite WHPA is shown in Figure 4.1. From the proposed District Well 16 location at the northern limit, the combined WHPA fans over 30,000 feet to the south-southwest and over 22,000 feet to the southeast. The Klahanie housing development, two regional thoroughfares, one powerline, and one gas line lie within this WHPA. Potential sources of contamination, identified by yellow numbers on Figure 4.1, include:

No. 8- Natural gas line right-of-way where herbicides may be used for maintenance.

No. 10- Active fire station which has an active diesel underground storage tank.
No. 11- Powerline right-of-way where herbicides may be used for maintenance.
No. 12 - Regional thoroughfare where hazardous materials may be spilled in a truck accident and where herbicides may be used for maintenance.

No. 29- Junior High School where degreasers and cleaners are used for maintenance.

No. 32 - Sanitary sewer pipes which could break and leak contents (not identified by a yellow number on Figure 4.1 because of the widespread nature of potential source).

No. 33- Residential septic systems which could either overflow or leak and discharge to soil before adequate biodegradation occurs (not identified by a yellow number on Figure 4.1 because of the widespread nature of potential source).

Risk assessment for the above activities shows no high or medium-risk activities.

### 4.4.2 Plateau Aquifer Zone III

District Wells 6 and 11.1 were evaluated separately because they are not contiguous, as shown on Figure 4.2. The Well 6 WHPA extends approximately 3,600 feet to the east in a relatively narrow, 500 -foot wide fan. No potential sources of contamination were located within or near this WHPA. The Well 11.1 WHPA extends approximately 2,000 feet uniformly in a radial pattern and encompasses the Sammamish Plaza shopping complex. Potential sources of contamination identified by yellow numbers on Figure 4.2 include:

No. 1. Removed underground storage tank, which is not on the Department of Ecology (DOE) leaking underground storage tank list.

No. 2 - Location of illegal drug laboratory, which was removed from the DOE contaminated site list.

No. 3- Inglewood Junior High School, which may store hazardous laboratory chemicals which could spill.

No. 4 - Removed underground storage tank, which is not on the DOE leaking underground storage tank list.

No. 6- Active underground storage tanks, which are not on the DOE leaking underground storage tank list.

No. 7. Removed underground storage tank, which is on the DOE leaking underground storage tank list.

No. 8- Natural gas line right of way where herbicides may be used for maintenance.

No. 9- One active and one removed underground storage tank, which are on the DOE leaking underground storage tank list.

No. 11 - Powerline right-of-way where herbicides may be used for maintenance.


## SOUND ANALYTICAL SERVICES，INC． <br> 4813 PACIFIC HIOHWAY EAST．TACOMA WASHINOTON 98424 －TBLEPHONE 206－922－2310－FAX 206－922－5047

## $\rightarrow 2$

WATER SAMPLE INFORMATION FOR INORGANIC CHIEMICAL ANALYSIS DO NOT WRIIE $\mathbb{N}$ SHADED AREAS．PLEASE FILL BOXES NUMBERED 1 THRU 13，SEE BACK FOR NSTRUCTIONS

|  | LABORATORY REPORT （Do Not Write Inside This Box） |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Tous |  | MCL |  | Reouk | Unim | $\begin{aligned} & \text { Complience } \\ & \text { Ye No } \end{aligned}$ |  | $\begin{array}{\|l} \hline \text { Cheminater } \\ \text { Initials } \end{array}$ |
| 1．Date Collected | Antimany | Sb | 0.006 |  | A ND | mpl | $\checkmark$ |  | 19 |
| 5／21／96 | Arenic | As | 0.05 |  | O．CNA | mg L | $\angle$ |  | Pr |
| 2．System Name： | Barium | Ba | 2.0 |  | NO | mf／L | 1 |  | P\％ |
|  | Beryllium | Be | 0.004 |  | $N D$ | mel | $\checkmark$ |  | － |
| 3．Sytem DD 4．Circle Group $2$ <br> （A） B | Cadmium | Cd | 0.005 |  | $N D$ | mpl | $\bigcirc$ |  | ＋2， |
|  | Chromium | Cr | 0.1 |  | $\cdots \cap$ | mg L | $<$ |  | $1{ }^{\prime \prime}$ |
| $\text { 5. County: } \quad K_{1}: 1$ | Copper | Cu | 1.3 \＃ |  | $\sim(1)$ | mg L | $\checkmark$ |  | Fip |
| 6．Source Type：（circle） | Lron | Fe | 0.3 |  | $N \rho$ | mex | $\checkmark$ |  | Nir |
| Surface Well <br> Spring Purchase | Lead | Pb | 0.015 米 |  | $N$ | me¢ | $\checkmark$ |  | ＋2\％ |
|  | Mangancese | Mn | 0.05 |  | 0.088 | ma $几$ |  | $\checkmark$ | $P$ |
| 7．Sample Taken（circle） | Mercury | H | 0.002 |  | ND | maL | $\swarrow$ |  | $\leq C$ |
| $\begin{aligned} & \text { Before } \\ & \text { Treatment } \\ & \hline \end{aligned}$ | Nickel | Ni | 0.1 |  | ND | mp／L | $\checkmark$ |  | P1\％ |
|  | Selenium | Se | 0.050 |  | ND | mp／L | ＜ |  | $\psi^{\prime \prime}$ |
| 8．Source No．： Source Name： <br> $\because \therefore$ $\vdots \because \therefore$ | Silver | As | 0.1 |  | $N 0$ | mel | $\checkmark$ |  | Ci\％ |
|  | Sodium | Na | None |  | 2.0 | mpl |  |  | N＇Y） |
| 10．Collected By：Telephonc：$(, \cdots y / A: 1$ | Thallium | 11 | 0.002 |  | $N D$ | mpl | $\checkmark$ |  | RPI |
|  | Zinc | Zn | 5.0 |  | $N D$ | mp／L | $\checkmark$ |  | 为 |
| 11．If taken after treatment，circle： <br> Fluoridation Chlorination <br> Filtration Other $\qquad$ <br> Water Softencer Type $\qquad$ | Herdness |  | None |  | 70 | me／L |  |  | $\therefore$ |
|  | Conductivity |  | 700 |  | 140 | umbon | $\checkmark$ |  | $\alpha \%$ |
|  | Turbidity |  | 1.0 |  | 0.2 | NTU | $\checkmark$ |  | KK |
|  | Color |  | 15.0 |  | $N D$ | Units | $\checkmark$ |  | 建 |
| 12．If then firen diatriburion indiowe adreme <br> Name： | Chloride | Cl | 250 |  | － | ma／ | $\checkmark$ |  | ik |
|  | Cyanide | CN | 0.2 |  | Ni） | mph | $\checkmark$ |  | $6 E$ |
|  | Fluoride | F | 2.0 |  | （1／） | med | $\checkmark$ |  | EK |
| 13．Party to pay for testing： <br> Name： <br> Address： $\qquad$ $\because$ <br> Telephove：（ ） | Nitrate | 4 N | 10.0 |  | 13.16 | ma／ | $\checkmark$ |  | 人K |
|  | Nitrite | ${ }_{0 \rightarrow N}$ | 1.0 |  | N／D | me／L | $\checkmark$ |  | L－K |
|  | Sulate | SO， | 250 |  | 8 | maL | $\checkmark^{\prime}$ |  | CK |
|  | TDS |  | 500 |  | 120 | mq／ | $\checkmark$ |  | \％ |
|  | LAEORATORY COMDIENTS |  |  |  |  |  |  |  |  |
| 14．Remarks $+\pi$ 4．：： sto． ． Ma F ．．．it， |  |  |  |  |  |  |  |  |  | IE 10 N.E. ISTH ST., SEATTLE, WA $28185-1224$

## WATER SAMPLE INFORMATION FOR RADIATION CHEMICAL ANALYSES



## DATE FRIML

REPORT
06106196

## SEND REPORT TO: (PANT FULL MANE \& ADDRESS)



## LABORATORY REPORT

(CO MOT WRITE BELOW THE LIE)


## LABORATORY SUPERVISOR

I BR /a tain 6.6
 nemurxs:
ADDITIONAL COPY TO:
SCOTT COFFEY
CGI TECHNOLOGIES
P.O. BOX 1158 GIG HARBOR, WA 98335

## Sound Analytical Services, Inc.

```
Report To: Sammamish Plateau Nater &
 Sewer District
Report On: Analysis of Water
Date: June 6, 1996
Report No.: 56831
IDENTIFICATION:
Sample received on 05-22-96
P.O. No. }47
```

ANALYSIS:

Lab Sample No. 56831-1
Client ID: Well 2.2

ICP Metals Per EPA Method 6010
Date Analyzed: 5-23-96 Units: mg/L

| Parameter | Result | POL |
| :--- | :---: | :---: |
| Calcium | 15 | 0.50 |
| Potassium | 3.4 | 0.50 |
| Magnesium | 4.8 | 0.10 |

General Chemistry Units: mg/L

| Parameter | Method | Result | POL |
| :--- | :--- | :--- | :--- |
| Bicarbonate $\left(a s \mathrm{CaCO}_{3}\right)$ | SM 2320B | 65 | 5 |

PQL - Practical Quantitation Limit

# GROUND WATER CONTAMINATION 

Susceptibility Assessment Survey Form

# SAMMAMISH PLATEAU WATER \& SEWER DISTRICT <br> 1510 228th Avenue S.E. Issaquah, Washington 98027 

# GROUND WATER CONTAMINATION 

Susceptibility Assessment Survey Form

## TABLE OF CONTENTS

- Susceptibility Assessment Survey Form
- Sammamish Plateau Well 4 WHPA Capture Zones
- Well Log
- Elevation Illustration
- Water Facilities Inventory Form
- Inorganic Chemical Analysis 1989-1993


## Ground Water Contamination Susceptibility Assessment Survey Form <br> Version 2.1

[MPORTANT!
Please complete one form for each ground water source (well, wellfield, spring) used in your water system. Photocopy as necessary.

## PART I: System Information

Well owner/manager: SAMMAMISH PLATEAU WATER + SEWER DIST. Water system name: SAMMAMISH PLATEAU KATER T SEUIER DIS:County: K/NG
Water system number: $\quad 409009$
Source number: 504
Well depth: $\frac{714}{}$ (it.) (From WFI form)
Source name: WELL \#4
WA well identification tag number: $\qquad$ $-1$
$\qquad$ well not tagged

Number of connections: $\quad 9000$
Township: 25 N

Section: $\qquad$ 34

Latitude/longitude (if available): $\qquad$ 1
Range:

Population served: 26,000
$\qquad$ OLE
1/4 1/4 Section: SW/NWN
$\qquad$
$\qquad$
How was lat./long. determined?
$\qquad$
 other:
global positioning device $\qquad$ survey $\qquad$ topographic map

* Please refer to Assistance Packer for details and explanations of all questions in Parts II through V. $\sim$

PART II: Well Construction and Source Information

1) Date well originally constructed: 3. 23.70 monch/day/year last reconstruction: ___ month/day/year
$\qquad$ information unavailable

$$
\begin{gathered}
\text { Survey Form Ver. } 2.1 \\
\text { page } 1
\end{gathered}
$$

2) Well driller: $\qquad$ Well Drilling

## PO BOX 2266 <br> TACOMA, Kn. 98444

_ _ well driller unknown
3) Type of well:
X Drilled: _ rotary _ bored $X$ cable (percussion) __Dug
_Other: __ springs) __ lateral collector (Ranney)
__driven __ jetted _ other: ___
Additional comments: $\qquad$
4) Well report available? X YES (attach copy to form) __ NO

If no well log is available, please attach any other records documenting well construction; egg. boring logs, "as built" sheers, engineering reports, well reconstruction logs.
5) Average pumping rate: $\qquad$ (gallons $/ \mathrm{min}$ )
Source of information: WATER FACILITTES InVENTORY
If not documented, how was pumping tate determined? $\qquad$

_
Pumping rate unknown
6) Is chis source treated?

If so. what type of treatment:
__ disinfection _ filtration _ carbon tilter __ air stripper $X$ other
Purpose of treatment (describe materials to be removed or controlled by treatment):
CHLORINATION FOR ODOR CONTROL.
7) If source is chlorinated, is a chlorine residual maintained: $\qquad$ YES

Residual level: $\qquad$ (At the point closest to the source.)

> Survey Form Var. 2.1 page ?

## PART III: Hydrogeologic Information

1) Depth to top of open interval: [check one]
——<20 ft _ 20-50 $\mathrm{ft} \ldots 50-100 \mathrm{tt}$ _100-200 tt X $>200 \mathrm{it}$
__ information unavailable ('<'means less than; '> ' means greater than)
2) Depth to ground water (static water level):
$—<20 \mathrm{ft}-20-50 \mathrm{ft} \quad \underbrace{50-100 \mathrm{ft}} \underset{\sim}{x}>100 \mathrm{ft}$
___ flowing well/spring (artesian)

How was water level determined?
X well log
_ other: $\qquad$
_ depth to ground water unknown
3) If source is a flowing well or spring, what is the continuing pressure: $N / A$
$\qquad$ psi (pounds per square inch)
or
$\qquad$ feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir. or catchment associated with this source: $\qquad$ YES $\square$ No NA
5) Wellhead elevation (height above mean sea level): $360^{+}$(ft)

How was elevation determined? __ topographic map __ Drilling/Well Log __ altimeter
$\qquad$ ocher: HYDRAULIC PROFILE MAP
$\qquad$ information unavailable
6) Confining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)
 evidence of a confining layer in well log no evidence of a continuing layer in well log

If there is evidence of a confining layer. is the depth to ground water more than 20 feet above the of theopen-interal?

OF THE LOWEST CONFINING LAYER
$\qquad$ information unavailable

```
Survey Form Var. 2.1
7) Sanitary setback:
\(\qquad\) \(<100 \mathrm{ft}^{*} \times 100-120 \mathfrak{t}\) \(\qquad\) \(120-200 \mathrm{ft}\) \(\qquad\) 200 tt * if less than 100 ft describe the site conditions:
8) Wellhead construction:
 IN WEULHOOSE
- other uses for wellhouse (describe): \(\qquad\)
- no wellhead control
9) Surface seal:
- 18 ft
—— \(<18 \mathrm{f}\) (no Department of Ecology approval)
('<'means less than)
_ < 18 ft (Approved by Ecology, include documentation)
('<'means less than)
\(X>18 \mathrm{t}\)
('> 'means greater than)
\(\qquad\) depth of seal unknown
\(\qquad\) no surface seal
10) Annual rainfall (inches per year):

Lu \(<10 \mathrm{in} / \mathrm{yr}\)
_ \(10-25 \mathrm{in} / \mathrm{yr}\)

PART IV: Mapping Your Ground Water Resource
1) Annual volume of water pumped:

How was this determined?
\(X\) meter
_ estimated: \(\qquad\) pumping rate
pump capacity \(\qquad\)
_ other: \(\qquad\)
2) "Calculated Fixed Radius" estimate of ground water movement: (see Instruction Packet)

6 month ground water travel time :

i year ground water travel time :
5 year ground water travel time:
1970
10 year ground water travel time:

Information available on length of screened/open interval?

_ NO
Length of screened/open interval: \(\qquad\) 20 (ti)
3) Is there a river lake, pond. stream, or other obvious surface water body within the 6 month time of trave t boundary? YES _ NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon. or holding pond located within the 6 month time of travel boundary?
_ YES \(\quad X\) NO (mark and identity on map).
Comments: \(\qquad\)

Survey Form Var. 2.1
page 5

\section*{PART V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:
likely pesticide application stormwater injection wells other injection wells abandoned ground water well landfills, dumps, disposal areas known hazardous materials clean-up site water systems) with known quality problems population density \(>1\) house/acre residences commonly have septic tanks Wastewater treatment lagoons sites used for land application of waste

6 month 1 year 5 year unknown

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:
2) Source specific water quality records:

Please indicate the occurrence of any test results since 1986 that meat the following conditions: (Unless listed on assessment. MCLs are listed in assistance package.)
A. Nitrate: (Nitrate \(\mathrm{MCL}=10 \mathrm{mg} / \mathrm{l}\))

Results greater than MCL
\(<2 \mathrm{mg} /\) lizer nitrate
2-5 mg/liter nitrate
\(>5 \mathrm{mg} /\) liter nitrate
_ Nitrate sampling records unavailable
YES NO
\(\bar{x}\)
\(x\)

B. VOCs: (VOC detection level \(0.5 \mathrm{ug} / \mathrm{l}\) or \(0.0005 \mathrm{mg} / \mathrm{l}\).)

Results greater than MCL or SAL
VOCs detected at least once
VOCs never detecred
__ VOC sampling records unavailable
C. EDB/DBCP:
(\(E D B \mathrm{MCL}=0.05 \mathrm{ug} / \mathrm{h}\) or \(0.00005 \mathrm{mg} / \mathrm{l} . \mathrm{DBCP} \mathrm{MCL}=0.2 \mathrm{ug} / \mathrm{l}\) or \(0.0002 \mathrm{mg} / \mathrm{l}\))
EDB/DBCP detected below MCL at least once
EDB/OACP detected above MCL at least once
EDB/DBCP never detected
EDB/DBCP tests required but not yet completed
\(\not \boxed{Z D B}\) EDBCP tests nor required
D. Other SOCs (Pesticides):

Other SOCs detected
(pesticides and other synthetic organic chemicals)
__ Other SOC tests pertormed but none detecterd
(list test methods in comments
Other SOC tests not periormed
If any SOCs in addition to EDB/DBCP were detected. please identify and date. If other SOC tests were pertiormed. but no SOCs derected, list test methods here: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{E. Bacterial contamination:}

Any bacterial detections) in the past 3 years in samples taken from the source (not distribution sampling records).

Has source (in past 3 years) had a bacteriological contarnination problem found in distribution samples that was attributed to the source.

__ Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical timeot travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.
1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)

\(\therefore \mathrm{NO}\)
Describe with references to map produced in Part IV:

A) Does the drilling log, well log or other geologic/engineering reports identity that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt, terrain?
\[
\text { _ YES } \quad \chi \text { NO }
\]
B) Does the drilling \(\log\), well \(\log\) or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?

_ NO
3) Is the source located in an aquiter with a high horizontal tlow rate? (These can include sources located on tlood plains of large rivers, artesian welis with high water pressure, and/or shailow tlowing wells and springs.)
_ YES

4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs? YES
a) Presence of ground water extraction wells removing more chan approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
< 6 month travel time
6 month-1 year travel time
\(1-5\) year travel time
5-10 year travel time

b) Presence of ground water recharge wells (diry wells) or heavy irrigation within...
< 1 year travel time

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.

\footnotetext{
Survey Form Ver. 2.1
}
page

\section*{Suggestions and Comments}

Did you attend one of the susceptibility workshops?
Did you find it useful?
\begin{tabular}{lll}
\(X\) YES & - & NO \\
\(\underline{X} Y E S\) & - & NO
\end{tabular}

Did you seek outside assistance to complate the assessment?
\(X\) YES
NO

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How coutd this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feet the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciared.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Ver. 2.1
page 10

Sammamish Plateau Water \& Sewer District
Well 4

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{reLl log …}} \\
\hline & & & & \\
\hline & er & & & \\
\hline & s rec & & & \\
\hline & \multicolumn{4}{|l|}{poation: State of WASṫINGTON} \\
\hline & \multicolumn{4}{|l|}{County \(\qquad\) Area \(\qquad\)} \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Map}} \\
\hline & & & & \\
\hline & \multicolumn{4}{|l|}{} \\
\hline & \multicolumn{4}{|l|}{rilling Co...- Richardson We.h Driniling Co.......Inc.} \\
\hline & \multicolumn{4}{|l|}{Address. P. O. Box 2266, Tacoma, WA . 98444} \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Method of Drillingcable \(\qquad\) Date.........Mareh 2319.70 King County Water District 拃82}} \\
\hline & & & & \\
\hline & \multicolumn{4}{|l|}{} \\
\hline & \multicolumn{4}{|l|}{aud surface, daturn.............ft. \({ }^{\text {above }}\) below} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

\section*{'}

Environmental Heaith

\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] 을
\(\vdots\)
\(\vdots\) \begin{tabular}{l}
- \\
\hline- \\
0
\end{tabular} \(=1\) 으N \(\underset{\sim}{\sim}\) \(\stackrel{?}{0}\) \(\because=\)
\[
=0
\] 은
Ferlum
Herpenese
Turbidity
Chlorte

SARPAKISH FLATEAU R:ATER \& SEFER DISTRICT
HRTER SAIFLE TNFOFMATICH FOR INOFGRNIC CFEMICAL RHALYSES - iseg
© HCL 0.05 \(+0.010\) 0.010 0.005 7.46
\[
0.010
\] -0.1
\(* 5.0\) \begin{tabular}{l}
N \\
\hdashline 0 \\
0 \\
0
\end{tabular}
\[
\begin{aligned}
& \text { Chromium } \\
& \text { tren }
\end{aligned}
\] 8.32 * 0.010 0.25 0.002 0.010 0.05 0.010 0.042 0.0010 10.005 \(* 0.010\) 0 E1 \(+0.1\) 0.1
\(* 5.0\) 0.2 8.22 0.010 0.25 - 0.002 0.010 0.010 0.041 0.005 -0.cio \(\cdot 10\) 63 160 0.2 0
\(\cdots\)
\(n\) * 0.2 0.010 * 0.010 0.005 0.010
\[
0.010
\]
\[
0.010
\]
\[
\text { © } 25
\]
\[
0.002
\] \(\stackrel{?}{0}\) 0.05 0.0010 N
0
0 응 \begin{tabular}{l}
7.23 \\
\hline 0.010
\end{tabular} 0.25 0.002 0.05 -0.010 0
0
0 은 \(\underset{\infty}{\infty}\) 220 0.4 - 5.0 0.2 \(?\) 0 7.06
0.010 *0.25 0.010 0.05 0.010
\[
0.25
\]
\[
0.002
\]
\[
\cdot 0.05
\]
\[
0.010
\]
\[
0.026
\]
\[
0.0010
\]
\[
0.005
\]
\[
\begin{gathered}
7 / 17 / 89 \\
7.48
\end{gathered}
\]
\[
\begin{array}{ll}
\text { KELLE} \\
7 / 17 / E 9 & \text { \&/10/Eq }
\end{array}
\]
\[
0.010
\] \begin{tabular}{l}
\(\circ\) \\
\hline-8 \\
\hline-
\end{tabular} \(n\)
\(\stackrel{N}{O}\)
0
0 0
0
0
0 응 8
krsenic
Ceciniun 10.0010 \(\because 0.002\) 155 0.1 \(-5.0\) \(n\)
0
0 \(\div\) 은
©
Lesd
Color
Fluoride
Mitrete sulfeto
- HCL is the Fexifun Contemirient level AItcied PER HILLION "tess Then

GAMMAMIBH PLATEAU WATER AND BEWER DIBTRICT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline I'IEM & \[
\begin{aligned}
& \text { WELL } 1 \\
& 9 / 7 / 90
\end{aligned}
\] & WELL 2
4/10/89 & \[
\begin{aligned}
& \text { MELL } 4 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 5 \\
& 9 / 7 / 90 \\
& \hline
\end{aligned}
\] & WELL 6
\[
9 / 7 / 90
\] & \[
\begin{aligned}
& \text { WELL } 7 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { HELL B } \\
& 9 / 7 / 90
\end{aligned}
\] & ** MCL \\
\hline pII & 6.74 & 7.23 & 7.26 & 7.74 & 7.88 & 7.29 & 7.12 & \\
\hline Arsenid & <0.010 \({ }^{\circ}\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & <0.010 & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Barium & <0.25. & <0.25 & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & 1.00 \\
\hline Cadmium & \(<0.002\) & \(<0.002\) & <0.002 & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & 0.01 \\
\hline Chromium & <0.010 & \(<0.010\) & <0.010 & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Iron & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & 0.3 \\
\hline Lead & \(<0.005\) & \(<0.0100\) & <0.005 & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.05 \\
\hline Manganese & <0.010 & \(<0.0100\) & \(<0.039\) & \(<0.037\) & \(<0.028\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Mercury & <0.0010 & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & <0.0010 & \(<0.0010\) & 0.002 \\
\hline Belenium & \(<0.05\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.01 \\
\hline gilver & \(<0.010\) & \(<0.0100\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Bodium & \(<10\) & \(\leqslant 10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<11\) & \\
\hline Hardness & 79 & 87 & 58 & 58 & 51 & 72 & 72 & \\
\hline Conductivity & 85 & 220 & 150 & 154 & 125 & 189 & 188 & 700 \\
\hline Turbidity & <0.2 & \(<0.4000\) & \(<0.1\) & \(<0.1\) & \(<0.2\) & \(<0.1\) & \(<0.9\) & 1.0 \\
\hline Color & \(<5.0\) & \(<5.0\) & \(\leq 10.0\) & \(<10.0\) & \(<5.0\) & \(<5.0\) & \(<10\). & 15 \\
\hline Fluoride & \(<0.2\) & \(<0.2000\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & 2.0 \\
\hline Nitrate & <1.3 & \(<0.7000\) & \(<0.2\) & <0.2 & \(<0.2\) & \(<0.2\) & \(<1.3\) & 10.0 \\
\hline Chloride & \(\leq 10\) & \(<10\) & \(<10\) & \(\leq 10\) & \(<10\) & \(<10\) & \(<10\) & 250 \\
\hline
\end{tabular}
PARTE PER MILYION

Less than Detectable Limits
** Maximum Contaminant Level
SAMMAMISH PLATEAU WATER AND SEWER DISTRICT
T66T - SISXTVN甘 TVOIWGHD JINYD\&ONT BOI NOILVKYOANI a'TdWVS XGLYM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline I'TEM & WELL 1
\[
7 / 12 / 91
\] & \[
\begin{aligned}
& \text { WELL } 2 \\
& 7 / 12 / 91 \\
& \hline
\end{aligned}
\] & WELL 4
\[
7 / 12 / 91
\] & \[
\begin{aligned}
& \text { WELL } 5 \\
& 7 / 12 / 91 \\
& \hline
\end{aligned}
\] & WELL 6
\[
7 / 12 / 91
\] & WELL 7
\[
7 / 12 / 91
\] & WELL 8
\[
7 / 12 / 91
\] & ** MCL \\
\hline pll & 6.6 & 6.4 & 7.3 & 6.7 & & & & \\
\hline Arsenic & \(<0.010\) & \(<0.010\) & \(<0.010\) & <0.7 & \(\frac{6.7}{<0.010}\) & 7.1 & 6.8 & \\
\hline Barium & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Cadinium & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & 1.00 \\
\hline Chromium & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.002\) & \(<0.002\) & 0.01 \\
\hline Iron & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Lead & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.05\) & \(<0.05\) & 0.3 \\
\hline Manganese & \(<0.010\) & \(<0.010\) & \(<0.018\) & \(<0.026\) & \(<0.023\) & \(<0.005\) & \(<0.005\) & 0.05 \\
\hline Mercury & \(<0.0010\) & \(<0.010\) & \(<0.0010\) & \(<0.0010\) & <0.0010 & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Selenium & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & <0.005 & \(<0.0010\) & \(<0.0010\) & 0.002 \\
\hline Silver & \(<0.010\) & \(<0.010\) & <0.010 & <0.010 & \(<0.010\) & \(<\) & \(<0.0\) & 0.01 \\
\hline Sodium & 7. & 6. & 9. & 8 & 5 & < 10.01 & \(<0.0\) & 0.05 \\
\hline \(\frac{\text { Iardness }}{\text { Conductivity }}\) & 61 & 66 & 52 & 51 & 43 & 1 & 12 & \\
\hline Conductivity
Turbidity & 180 & 270 & 120 & 130 & 120 & 190 & 75 & \\
\hline Turbidity
color & 0.2 & 0.6 & . 4 & \(<0.3\) & \(\frac{120}{.3}\) & 19 & 210 & 700 \\
\hline \(\frac{\text { Color }}{\text { Eluoride }}\) & \(<5.0\) & \(<5.0\) & \(<5.0\) & \(<5.0\) & \(<5.0\) & . 4 & 0.3 & 1.0 \\
\hline Nituoride & \(<0.2\) & \(<0.2\) & \(<0.2\) & <0.2 & <0.2 & \(<5\). & \(<5\). & 15 \\
\hline chloride & 1.2 & \(<1.9\) & 1.8 & \(<0.2\) & \(<0.2\) & \(<0.2\) & < 1.3 & \\
\hline (,roride & \(<10\) & \(<10\) & \(<10\) & \(<10{ }^{\circ}\) & 21 & 24 & \(<10\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ITEM & WELL: 1 & WELL 2 & WELI 4 , & WELL 5 & WELL 6 號 & WELL 7 & WELL 8 & WELL 9 & - MCL \\
\hline Ma. & 3-2.93 & 3-2.93 & 3-2.93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2-93 & \\
\hline \% m & & & & & & & & & \\
\hline Arsenic \({ }^{\text {a }}\), \({ }^{\text {a }}\) & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & 0.05 \\
\hline Barium _ume & < 0.1 & < 0.1 & < 0.1 & < 0.1 & < 0.1 & < 0.1 & \(<0.1\) & < 0.1 & 1 \\
\hline Cadmium \({ }^{\text {a }}\), \({ }^{3}\) & \(<0.002\) & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & 0.01 \\
\hline & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & \(<0.05\) & 0.05 \\
\hline & < 0.02 & < 0.02 & < 0.02 & < 0.02 & < 0.02 & < 0.02 & < 0.02 & \(<0.02\) & . 3 \\
\hline & < 0.05 & < 0.05 & \(<0.05\) & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.17 & 0. \\
\hline & \(<0.002\) & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & 0.05 \\
\hline Manganese , mex & < 0.01 & < 0.01 & < 0.043 & < 0.041 & < 0.092 & < 0.01 & < 0.01 & < 0.01 & 0.05 \\
\hline Mercury \%, < , , \%, & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & <0.0002 & < 0.0002 & < 0.0002 & 0.002 \\
\hline Selenium \({ }^{\text {den }}\), \({ }^{\text {a }}\) & \(\leq 0.005\) & < 0.005 & < 0.005 & < 0.005 & < 0.005 & < 0.005 & < 0.005 & < 0.005 & 0.01 \\
\hline & < 0.01 & < 0.01 & < 0.01 & \(<0.01\) & < 0.01 & < 0.01 & < 0.01 & < 0.01 & 0.05 \\
\hline & 9.1 & 9.3 & 9.0 & 7.7 & 8.4 & 9.5 & 10. & 8.5 & \\
\hline & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & 5 \\
\hline Hardness, \%, m, & 78. & 80 & 65 & 65 & 93 & 79 & 75 & 68 & \\
\hline Conduclivity \% \(\times\) - & 190 & 150 & 160 & 150 & 210 & 190 & 190 & 160 & 700 \\
\hline & 0.10 & 0.49 & 0.17 & 0.15 & 0.1 & 0.1 & 0.14 & 0.43 & 1 \\
\hline & 5. & 5. & 5. & 5. & 5. & 5. & 5. & 5. & 15 \\
\hline Chloride \({ }^{\text {a }}\), & \(<20\) & \(<20\) & < 20 & \(<20\) & \(<20\) & <20 & <20 & < 20 & 250 \\
\hline Fluoride \({ }^{\text {a }}\), Cl & < 0.5 & < 0.5 & \(<0.5\) & \(<0.5\) & \(<0.5\) & < 0.5 & \(<0.5\) & < 0.5 & 2 \\
\hline & < 1.0 & < 1.0 & \(<1.0\) & < 1.0 & \(<1.0\) & <1.0 & \(<1.1\) & \(\leq 1.0\) & 10 \\
\hline Sulate m & \(<10\) & < 10 & < 10 & < 13 & < 10 & < 10 & < 10 & \(<10\) & 250 \\
\hline
\end{tabular}

\section*{LEGEND}
< Less Than Deleclable Limits
-. Maximum Conlaminant Level

\title{
Ground Water Contamination Susceptibility Assessment Survey Form
}

Version 2.2
IMPORTANT!Please complete one form for each ground water source
(well, wellfield, spring) used in your water system.
Photocopy as necessary.

\section*{PART I: System Information}

Well owner/manager : __ Sammamish Plateau Water \& Sewer District
Water system name : \(\qquad\)
Sammamish Plateau Water \& Sewer District
County:_King
Water system number: \(\qquad\) Source number: New Replacement Well (Replaces
Original Well 4 source number SO4
Well depth: \(\qquad\) (ft.) (From WFI form)

Source name: \(\qquad\)
WA well identification tag number: \(\underline{\text { AAS }} \underline{-270}\)
\(\qquad\) well not tagged

Number of connections: \(\qquad\) Population served: \(\quad 48,036\)

Township: 25 N

Range: \(\qquad\)
Section: \(\qquad\) 1/4 1/4 Section: NW1/4 of the SW1/4

Latitude/longitude (if available): \(\qquad\)
How was lat./long. determined?
global positioning device \(\qquad\) survey ___ topographic map
x _other: Online King County imap - http://www.metrokc.gov/gis/mapportal/iMAP_main.htm
* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V.

\section*{PART II: Well Construction and Source Information}
1) Date well originally constructed: \(\underline{03} / \underline{18} / \underline{04}\) month/day/year
last reconstruction: _ / _ / _ month/day/year
\(\qquad\) information unavailable
2) Well driller: __Stephen I Schneider - Schneider Equipment Inc.

21881 River Road NE
St. Paul, Oregon 97137
\(\qquad\) well driller unknown
3) Type of well:
x Drilled: X rotary _ bored _ cable (percussion) _ Dug
_ Other: _ spring(s) _ lateral collector (Ranney)
_ driven _ jetted _ other:
Additional comments: \(\qquad\)
4) Well report available? \(x\) YES (attach copy to form) _ NO

If no well \(\log\) is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: \(\qquad\) (gallons/min)

Source of information: Replacement Well 4R Construction and Testing Report (CDM, 2004)
If not documented, how was pumping rate determined? \(\qquad\)
_ Pumping rate unknown
6) Is this source treated?

If so, what type of treatment:
\(\underline{\mathrm{x}}\) disinfection \(\underline{\mathrm{x}}\) filtration _ carbon filter _ air stripper _ other
Purpose of treatment (describe materials to be removed or controlled by treatment):
Water is chlorinated and filtered to remove Manganese and Arsenic
7) If source is chlorinated, is a chlorine residual maintained: \(\underline{X}\) YES _ NO

Residual level: minimum 0.3 ppm free after the filters (At the point closest to the source.)

\section*{PART III: Hydrogeologic Information}
1) Depth to top of open interval: [check one]
\(\ldots<20 \mathrm{ft} \ldots 20-50 \mathrm{ft} \ldots 50-100 \mathrm{ft} \ldots 100-200 \mathrm{ft}\) X \(>200 \mathrm{ft}\)
__information unavailable ('<' means less than; '>' means greater than)
2) Depth to ground water (static water level):
\(\ldots<20 \mathrm{ft} \quad _^{20-50 \mathrm{ft} \quad _^{50-100} \mathrm{ft} \quad \underline{X}>100 \mathrm{ft}}\)
_ flowing well/spring (artesian)
How was water level determined?
_ well \(\log \quad \underline{X}\) other: __ Measured to within 0.01 ft with electronic sounding device
_ depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure:
\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir, or catchment associated with this source: \(\qquad\) YES \(\qquad\) NO
5) Wellhead elevation (height above mean sea level):

How was elevation determined? \(\underline{X}\) topographic map __ Drilling/Well Log _ altimeter
\(\qquad\) other: \(\qquad\)
__ information unavailable
6) Confining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)

X evidence of a confining layer in well log
- no evidence of a confining layer in well log

If there is evidence of a confining layer, is the depth to ground water more than 20 feet above the bottom of the lowest confining layer?
_ information unavailable
7) Sanitary setback:
\[
X<100 \mathrm{ft}^{*} \quad \text { _100-120 ft } \quad 120-200 \mathrm{ft} \ldots>200 \mathrm{ft}
\]
* if less than 100 ft describe the site conditions:

Well site is about 70 feet from Main Street - a gravel county road that provides access to about
12 Properties. A setback exemption was allowed by King County Health Department
due to the deep \((695 \mathrm{ft})\) surface seal
8) Wellhead construction:

X wellhead enclosed in a wellhouse
X controlled access (describe): The well will be locked in a wellhouse that is monitored via telemetered security systems
_ other uses for wellhouse (describe): \(\qquad\)
_ no wellhead control
9) Surface seal:
_ 18 ft
_ < 18 ft (no Department of Ecology approval) ('<' means less than)
\(\ldots<18 \mathrm{ft}\) (Approved by Ecology, include documentation)('<' means less than)
\(\underline{x}>18 \mathrm{ft} \quad\) ('>' means greater than)
__ depth of seal unknown
_ no surface seal
10) Annual rainfall (inches per year):
\[
\ldots<10 \mathrm{in} / \mathrm{yr} \quad _^{10-25 \mathrm{in} / \mathrm{yr} \underline{X}>25 \mathrm{in} / \mathrm{yr}}
\]

\section*{PART IV: Mapping Your Ground Water Resource}
1) Annual volume of water pumped: 3 359,739,504 (gallons)

How was this determined?
\(\qquad\) meter
_ estimated: \(\qquad\) pumping rate (\(\qquad\)
_ _ pump capacity (\(\qquad\)
X other: Water Rights
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time :
780
1 year ground water travel time :
1,103
\(\underline{2,467}\) (ft)

5 year ground water travel time:
3,489
10 year ground water travel time: \(\qquad\) (ft)

Information available on length of screened/open interval?
\[
\underline{X} \text { YES_NO }
\]

Length of screened/open interval: 85 (ft)
3) Is there a river, lake, pond, stream, or other obvious surface water body within the 6 month time of travel boundary? _ X YES _ NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon, or holding pond located within the 6 month time of travel boundary? X YES _ NO (mark and identify on map).

Comments: _ A large wetland occupies the north half of the 6-month time of travel boundary. Septic Systems serve the homes along Main Street. A gravity sewer line runs parallel along Main Street

\section*{PART V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:

6 month 1 year 5 year unknown

sites used for land application of waste \(\qquad\)
\(\qquad\)
\(\qquad\)
Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:

The Wellhead Protection Program for Plateau and Cascade View wells Report prepared in June 24, 1998
for the Sammamish Plateau Water \& Sewer District discussed the ground water flow for the Plateau area wells.
Well 4R is in Zone IV. The top of Zone IV occurs at elevations of approximately 340 to 500 feet below sea level.
Sections related to potential sources for the Zone IV and shallower Zone III aquifers are attached and used to
Answer the questions in the above survey. Well 5 continues to be used as a recharge well as
part of a groundwater recharge project. Potable system groundwater is used for the injection source.

\section*{2) Source specific water quality records:}

Please indicate the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment, MCLs are listed in assistance package.)

If any SOCs in addition to EDB/DBCP were detected, please identify and date. If other SOC tests were performed, but no SOCs detected, list test methods here: \(\qquad\)

Any bacterial detection(s) in the past \(\underline{3}\) years in samples taken from the source (not distribution sampling records) \(\qquad\)
\(\qquad\)
Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source. \(\qquad\)
\(\qquad\)

Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.
1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)

Describe with references to map produced in Part IV:
2) Aquifer Material:
A) Does the drilling log, well log or other geologic/engineering reports identify that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?
\[
\ldots \text { YES } \quad \underline{X} \text { NO }
\]
B) Does the drilling log, well log or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?
\[
\underline{X} \text { YES } \quad-\mathrm{NO}
\]
3) Is the source located in an aquifer with a high horizontal flow rate? (These can include sources located on flood plains of large rivers, artesian wells with high water pressure, and/or shallow flowing wells and springs.)
_ YES \(\quad \underline{X}\) NO
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs? YES
a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
\begin{tabular}{llll}
& YES NO & unknown \\
\(<6\) month travel time & - & \(X_{-}\) & - \\
6 month-1 year travel time & \(-X_{-}\) & - \\
\(1-5\) year travel time & \(-X_{-}\) & \(-X_{-}\) & -
\end{tabular}
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...
\begin{tabular}{llll}
& YES NO & unknown \\
\(<1\) year travel time & \(-\mathrm{X}--\) & - \\
\(1-5\) year travel time & - & - & - \\
\(5-10\) year travel time & - & - & -
\end{tabular}

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.

The Wellhead Protection Program for Plateau and Cascade View wells Report prepared in June 24, 1998
for the Sammamish Plateau Water \& Sewer District discussed the ground water flow for the Plateau area wells. The ground water flow directions within each aquifer zone were evaluated using static water level from wells completed within the aquifer zone. Well 4R is in Zone IV. The top of Zone IV occurs at elevations of approximately

340 to 500 feet below sea level. A potentiometric surface map for wells completed in Zone IV shows that ground water flow is generally to the west and northwest direction.

\section*{Suggestions and Comments}
\begin{tabular}{lll}
Did you attend one of the susceptibility workshops? & \(\ldots\) YES & X NO \\
Did you find it useful? & \(\ldots\) YES & _ NO \\
Did you seek outside assistance to complete the assessment? & \(\underline{X}\) YES & _ NO
\end{tabular}

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.

Sammamish Plateau Water and Sewer District Well 4R Calculated Fixed Radius Map

Table A-1: Input Data for EPA WHPA Code 2.2 Analytical Models
\begin{tabular}{||c|c||}
\hline Zone/Well Name & Zone IV / 4R, 11.2 \\
\hline
\end{tabular}

GPTRAC Semi-analytical Options
\begin{tabular}{||l|l|l||}
\hline \multicolumn{1}{|c|}{ Variable Name } & \multicolumn{1}{|c|}{ Symbol } & \\
\hline Aquifer type & IAQFR & Confined \\
\hline Transmissivity & TRANSM & 5561 FT2/DAY \\
\hline Hydraulic gradient & GRADNT & 0.002 \\
\hline Ambient flow direction & ALPHA & \(180^{\circ}\) \\
\hline Porosity & POROS & 20 percent \\
\hline Saturated thickness & B & 100 to 200 ft \\
\hline \begin{tabular}{l}
Confining bed hydraulic \\
conductivity
\end{tabular} \\
\hline Confining bed thickness \\
\hline Areal recharge rate \({ }^{2}\) & KPRIM & \(10^{-1}\) gal/day/ft2 \\
\hline Original saturated thickness \({ }^{2}\) & CPRIM & 92 ft \\
\hline Maximun radius of influence \({ }^{2}\) & RMAX & NA \\
\hline Boundary conditions & IBOUND & None \\
\hline Well pumping rate (4R, 11.2) & QPWELL & 2,000, and 1,800 gpm \\
\hline Well recharge rate & QRWELL & NA \\
\hline X-coordinate (ft) (4R, 11.2) & XPWELL & \(1,344,847,1,345,493\) \\
\hline Y-coordinate (ft) (4R, 11.2) & YPWELL & \(224,324,226,241\) \\
\hline
\end{tabular}

1Leaky confined aquifers only; 2 Unconfined aquifers only
NA Not applicable

\section*{COMMENTS}

Ambient flow direction is measured counterclockwise from x-axis. Well pumping rate was estimated from water right application.

\section*{GROUND WATER CONTAMINATION}

Susceptibility Assessment Survey Form

\title{
SAMMAMISH PLATEAU WATER \& SEWER DISTRICT \\ 1510 228th Avenue S.E. \\ Issaquah, Washington 98027
}

WELL NO. 6

\title{
GROUND WATER CONTAMINATION
}

Susceptibility Assessment Survey Form

\section*{TABLE OF CONTENTS}
- Susceptibility Assessment Survey Form
- Sammamish Plateau Well 6 WHPA Capture Zones
- Well Log
- Elevation Illustration
- Water Facilities Inventory Form
- Inorganic Chemical Analysis 1989-1993

\section*{Ground Water Contamination Susceptibility Assessment Survey Form \\ Version 2.1}

IMPORTANT! Please complete one form for each ground water source (well, wellfieid, spring) used in your water system. Photocopy as necessary.

\section*{PART I: System Information}

Well owner/manager: SAMMAMISH FLATEAU WATEETSEWER DIST. Water system name: SAMMIAMIISH PRATEAL WATER T-SEWER DVST County: \(\qquad\) KING
water system number: \(\quad 409009\)
Source number: \(\qquad\)
Well depth: \(\qquad\) (ti.) (From WFI form)
Source name:
\[
\text { WELL } 6
\]

WA well identification tag number: \(\qquad\) --_ -
\(\qquad\) well not tagged
Number ot connections: 9000
Township; \(\qquad\)
Section: \(\qquad\)
Population served: 26,000
Range: \(\qquad\)

1/4 1/4 Section: NE/SE
Lutitude/longirude (if available): \(\qquad\) 1
How was lat./long. determined?
\(\qquad\) global positioning device \(\qquad\) survey \(\qquad\) topographic map
* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V .

PART II: Well Construction and Source Information

\title{
1) Date well originally constructed: 8, \\ \(\qquad\) monch/day/year
}

> last reconstruction: ___ month/day/year
\(\qquad\) information unavailable
\[
\begin{gathered}
\text { Survey Form Der. } 2.1 \\
\text { page : }
\end{gathered}
\]
2) Well driller: STGRY YA EHCTECNG
\[
\begin{aligned}
& \text { MVALLUP Win: }
\end{aligned}
\]
\(\square\) well driller unknown
3) Type of well:

Additional comments: \(\qquad\)
+) Weill report available? X YES (attach copy to form) _ NO
If no well \(\log\) is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: \(\qquad\) (gallons \(/ \mathrm{min}\))
Source of information: NATER IACILITIES TNUENTORY
If not documented, how was pumping rate determined? \(\qquad\)
_ Pumping rate unknown
6) Is this source treated?

If so, what type of treatment:
__ disinfection __ titration __ carbon titer __ air stripper X uther
Purpose of treatment (describe materials to be removed or controlled by treatment):
CHLORINATION FOR COZ CENTRAL
7) It source is chlorinated, is a chlorine residual maintained: \(\qquad\) YES

Residual level: \(\qquad\) (At the point closest to the source.)
```

                                    Survey Form Ver. 2.1
                                    page =
    ```

\section*{PART III: Hydrogeologic Information}
1) Depth to top of open interval: [check one]

__ information unavailable ('<'means less than; '> ' means greaser than)
2) Depth to ground water (static water level):
\(\ldots<20 \mathrm{ft} \quad\) 20-50 ft \(\quad\) - \(50-100 \mathrm{ft} \quad>100 \mathrm{tt}\)
__ towing wellspring (artesian)
How was water level determined?
\(X\) well log other: \(\qquad\)
\(\qquad\) depth to ground water unknown
3) It source is a towing well or spring, what is the confining pressure: \(\quad \mathrm{N} / \mathrm{A}\)
\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feet above wellhead
4) It source is a flowing well or spring, is there a surface impoundment, reservoir. or catchment associated with this source: \(\qquad\) YES \(\qquad\) NO \(N / A_{i}\)
5) Wellhead elevation (height above mean sea level): \(\qquad\) (it)

How was elevation determined? _ topographic map Xrilling/Well Log _ altimeter
\(\qquad\) other: \(\qquad\)
\(\qquad\) information unavailable
6) Continuing layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)
evidence of a confining layer in weill log
- no evidence of a confining layer in we! log

If there is evidence of a confining layer, is the dept to ground water more than 20 fer above the top of the open interval?
\(\qquad\) information unavailable
```

Survey form Ver, 2.1
zage :

```
7) Sanitary setback:
\(\qquad\) \(<100 \mathrm{ft}^{*}\)
\(100-120 \mathrm{ft}\) \(\qquad\) 120-200 ft \(>200\) it * if less than 100 t describe the site conditions:
8) Wellhead construction:

wellhead enclosed in a well house
controlled access (describe): FENCED TGATED! \(\angle O C K E D)\)
_ other uses for wellhouse (describe): \(\qquad\)
- no wellhead control
9) Surface seal:
- 18 ft
_ < 18 ft (no Department of Ecology approval)
('<'means less than)
\(\ldots<18 \mathrm{ft}\) (Approved by Ecology, include documentation) l'<' means less than)
Y \(>18 \mathrm{r}\)
('>' means greater than)
depth of seal unknown
\(\qquad\) no surface seal
10) Annual rainfall (inches per year):
\(\ldots<10 \mathrm{in} / \mathrm{yr} \quad \ldots 10-25 \mathrm{in} / \mathrm{yr} \quad\) —. \(>25 \mathrm{in} / \mathrm{yr}\)

PART IV: Mapping Your Ground Water Resource
1) Annual volume of water pumped: \(\qquad\) (gallons)

How was this determined?
\(X\) meter
— estimated: _ pumping rate (___
__ pump capacity (
_ other: \(\qquad\)
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time :

I year ground water travel time : 390

5 year ground water travel time: 880

10 year ground water travel time:
1240 (ft)

Information available on length of screened/open interval?
 _ NO

Length of screened/open interval: \(\square\) 20 (t)
3) Is there a river, lake, pond. stream, or other obvious surface water body within the 6 month time of travel boundary? — YES X NO (mark and identify on map).
+) Is there a stormwater and/or wastewater facility, treatment lagoon. or holding pond located within the 6 month time of travel boundary? \(\qquad\) YES NO (mark and identity on map).
Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Yer. 2.1
page:

\section*{PART V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:
likely pesticide application stormwater injection wells other injection wells abandoned ground water well landfills, dumps, disposal areas known hazardous materials clean-up site water systems) with known quality problems population density > 1 house/acre
residences commonly have septic tanks
Wastewater treatment lagoons sites used for land application of waste

6 month 1 year 5 year unknown

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:
2) Source specitic water quatity records:

Please indicate the occurrence of any test resuits since 1986 that meer the following conditions: (Unless listed on assessment, MCLs are listed in assistance package.)
\begin{tabular}{|c|c|}
\hline A. Nitrate: (Nitrate MCL \(=10 \mathrm{mg} / \mathrm{l}\)) & YES NQ \\
\hline Resuits greater than MCL & \(\cdots\) \\
\hline \(<2 \mathrm{mg} / \mathrm{liter}\) nitrate & \(\bar{\chi}\) \\
\hline 2-5 mg/iter nitrate & \\
\hline > \(5 \mathrm{mg} / \mathrm{liter}\) nitrate & 7 \\
\hline _ Nitrate sampling records unavailable & \\
\hline B. VOCs: (VOC detection level \(0.5 \mathrm{ug} / \mathrm{l}\) or \(0.0005 \mathrm{mg} / \mathrm{l}\).) & YES NO \\
\hline Results greater than MCL or SAL & X \\
\hline VOCs detecred at least once & \(\underset{x}{ }\) \\
\hline VOCs never derected & \(\underline{\chi}\) \\
\hline VOC samoling records unavailable & \\
\hline C. EDB/DBCP: & YES NO \\
\hline (EDB MCL \(=0.05 \mathrm{ug} / \mathrm{l}\) or \(0.00005 \mathrm{mg} / \mathrm{l}\). DBCP MCL \(=0.2 \mathrm{ug} / \mathrm{l}\) or \(0.0002 \mathrm{mg} / \mathrm{l}\).) & \\
\hline EDB/DBCP detected below MCL at least once & \\
\hline EOB/DBCP detected above MCL at least once & \\
\hline EDB/DECP never detected & \\
\hline EDB/DECP tests required but not yet completed EDB/DBCP tests not required & \\
\hline D. Qther SOCs (Pesticides): & YES NQ \\
\hline Other SOCs detected & \\
\hline (pesticides and other syathetic organic chemicals) & \\
\hline
\end{tabular}
__ Other SOC tests pertormed but none detected
(list test methods in comments
Other SOC tests not pertormed

If any SOCs in addition to EDB/DBCP were derected, please identity and date. if uther SOC tests were pertormed. but no SOCs detected, list test methods here: \(\qquad\)
```

Survev Form ver. 2.:
sage -

```

\section*{E. Bacterial contamination:}

__ Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones tor that source. As a system develops its Wellhead Protection Plan tor theses sources, a more detailed delineation method should be considered.
1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)

Describe with references to map produced in Part IV:

\section*{STEEP HILLSIDE + ravine. This area is an the hillside}

\section*{coming down from the East Sammamsh platen to Lake Sammamish.}
2) Aquifer Material:
A) Does the drilling \(\log\), well \(\log\) or other geologic/engineering reports identity that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt certain?

B) Does the drilling log, well \(\log\) or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?
\[
\underline{\sqrt{V E S}} \quad \text { _ NO }
\]
\[
\begin{gathered}
\text { Survey form yer. } 2.1 \\
\text { page } 3
\end{gathered}
\]
3) Is the source locared in an aquifer with a high horizontal tlow rate? (These can include sources located on thood plains ur large rivers, artesian weils with high witer pressure. and/or shallow tlowing wells and springs.)
__ YES

4) Are there other high capacity wells (agricuitural, municipal and/or industrial) located. within the CFRs? hio a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within.
< 6 month travel time
6 month-1 year travel time
1-5 year travel time

b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...
\(<1\) year travel time
1-5 year travel time
5-10 year travel time
YES NO unknown
\(-\ll-\)
\(-<-\)

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Ver. 2.1
oage ;

\section*{Suggestions and Comments}

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found garticular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instructian package help you find the information needed to complete the assessment? How much time did it take you to complete the form? . Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Ver. 2.1

Sammamish Plateau Watep \& Sewer District Well 6

File Original and FYrst Copy with Deparment of Ecology Sesond Copy - Owhers Copy Third Copy - Driller's Copy

 Irtication [I Teat Wrell \(\square\) Otherc \(\because\)
(4) TYPE OF WORK: Owner's number of wrell : \(\quad\) (H)

(6) CONSTRUCION DETAMS Casine tinstalied

\section*{16}

Hhemikx
\(\qquad\) Taranded \(a\), Perforatoms

\section*{

 ary}

Sck

(10) WELL LOG:

Yormation: Deteribe by color, character, size of materion amd strwetwre, and
 stratum panktrated, Lerth at least one antrys for each changer. of formation

要等
 720

 20

\section*{}

 NAMGE:

Health
Environmental Health

WATER FACILITIES INVENTORY（WFI）
Read Instructions on back belore completing

O4TERECEAREDOLIンL

FE8 1,1994
Ans＇d． \(\qquad\)

SYSTBMS SERVING ANY RESIDENTS SPEOPLE UVINGIN A OWELUNG SERVED 日Y THE SYSTEM，GOMPLETE THIS GECFION

a sox pr Applucable
\begin{tabular}{|c|c|}
\hline CITY
BSSACUAH & \begin{tabular}{cc}
STATE & 2PCOOE \\
\(\cdots\) & 9307
\end{tabular} \\
\hline 5．SWSTEM CONTACT PERSON
\(\qquad\) & \begin{tabular}{l}
TITLE \\
MAYAGER
\end{tabular} \\
\hline \begin{tabular}{l}
OAY TEUAPHONE
\[
2 \pi n=39)=4156
\] \\
\＆GNNERSHP （CHECK ONE ONLY）
\end{tabular} & \begin{tabular}{l}
EVENMO TEIFPHONE \\
7．FREDCMINANT CHARACTEAISFIC ［CHECK ONE ONLY
\end{tabular} \\
\hline PANATE NON－RFOFTT
PYNATE FORPROFTI
LOCAL GOVEPRMENT （CONNTY／CTY／PUDI WATER DSTFICT．
STATE
\(\square\) FEDERAL & \(\square\) fesidental， RECREATTONAL EUSNESS／NOUSTMINI I MGFCMRTMAL／COMMERCMLL LOOGNE／FOCO SETVCE SCHOCL／DAY CAFE OTHER（CHURCHES，ETC） \\
\hline
\end{tabular}

i4 TOTAL NMMBEA
CONECTICNS HETIERED
9． 944

IS．DISTMBUTION AESERVORIST TOTAL CAPACITY

12，850，000 амцокз

shipheish flateav bater \& semer ohstrict
hater shifle infofipatioh for inofganic cherichl healyses - iceg
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{17EM} & \multirow[t]{2}{*}{\begin{tabular}{l}
F-大TER \\
EIL 1 \\
/ \(/\) /E
\end{tabular}} & \multicolumn{2}{|l|}{SRPAFLE INFOFMATICHFOF} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { INOFGANI } \\
\text { \% } \\
\text { HELL } 5 \\
4 / J O / E 9
\end{gathered}
\]} & \multicolumn{3}{|l|}{CY:EHICAL APALYSES - ICE9} & \multirow[t]{2}{*}{* HCL} \\
\hline & & \begin{tabular}{l}
vetl 2 \\
4/10/69
\end{tabular} & YELL 4 4/10/E9 & & \[
\begin{aligned}
& \text { KELL } 6 \\
& 7 / 17 / E 9
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 7 \\
& 7 / 17 / E 9
\end{aligned}
\] & \[
\begin{aligned}
& \text { FE11 } \\
& 4 / 10 / E 9
\end{aligned}
\] & \\
\hline pH & 7.06 & 7.23 & 8.22 & 0.32 & 7.46 & 7.48 & 17.05 & ---- \\
\hline Rrentic. & 0.0 .010 & 0.010 & -0.010 & 10.010 & * 0.010 & 0.010 & 0.010 & 0.05 \\
\hline EerJum & -0.25 & \(0.25^{\circ}\) & -0.25 & -0.25 & -0.25 & 40.25 & 60.25 & 1.0 \\
\hline Ce<ritum & 0.002 & -0.002 & * 0.002 & 0.002 & -0.c02 & 0.002 & \%0.c02 & 0.01 \\
\hline Chremiun & 0.010 & -0.010 & -0.010 & -0.010 & 0.010 & *0.010 & *0.010 & 0.005 \\
\hline Ircon & -0.05 & *0.05 & *0.05 & 0.05 & -0.05 & 0.05 & 0.0 .05 & 0.3 \\
\hline letd & 00.010 & -0.c10 & 10.010 & 0.010 & -0.cio & -0.610 & \%0.010 & 0.05 \\
\hline Perigentse & -0.010 & \(\bullet 0.010\) & 0.041 & 0.042 & 0.026 & -0.010 & -0.010 & 0.05 \\
\hline fercury & 0.0010 & \%0.0080 & 0.0010 & 0.0010 & \(\cdots 0.0010\) & -0.0810 & 0.0010 & 0.002 \\
\hline Tefentem & 0.0 .005 & 10.005 & 10.005 & 0.005 & 0.005 & *0.005 & *0.005 & 0.01 \\
\hline SIfver & -0.010 & 0.010 & -0.010 & *0.010 & *0.010 & -0.010 & 0.010 & 0.05 \\
\hline Sodium & -10 & -10 & -10 & 10 & -10 & 10 & 10 & \\
\hline Ficturats. & 60 & 87 & 63 & E1 & 48 & 74 & 81 & \\
\hline Conductivity & 155 & 220 & 160 & 150 & 120 & 200 & 200 & 700 \\
\hline Turbldity & 0.1 & * 0.4 & -0. 2 & 0.1 & 10.1 & 0.2 & -0.1 & 1.0 \\
\hline Cofer & - 5.0 & 0.5 .0 & * 5.0 & 9.0 & - 5.0 & 15.0 & -5.0 & 15.0 \\
\hline Flnorlde & -0. 2 & 0.2 & 0.2 & 10.2 & *0. 2 & -0.2 & 0.2 & 2.0 \\
\hline Nitreto & 1.1 & -0.7 & -0. 2 & *0.2 & -0.2 & 1. 6 & 0. 2 & 10.0 \\
\hline Chiorlc & *10 & -10 & \(\bullet 10\) & - 10 & -10 & -10 & -10 & 250 \\
\hline \multicolumn{8}{|l|}{tulfeto} & 250 \\
\hline \multicolumn{9}{|l|}{} \\
\hline \begin{tabular}{l}
thess Then \\

\end{tabular} & \begin{tabular}{l}
(Hotes \\
end ih
\end{tabular} & \begin{tabular}{l}
\[
\text { Fell } 7
\] \\
se nurter
\end{tabular} & \[
\begin{array}{r}
\text { retes } \\
\text { eretist }
\end{array}
\] & for Iren pbove.) & Turbldit & & & \\
\hline
\end{tabular}
BAMMAMIBH PLATEAU WATER AND BEWER DIBTRICT
WATER SAMPLE INFORMATION FOR INORGANIC CHEMICAL ANALYBIB - 1990
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline I'LEM & \[
\begin{aligned}
& \text { WELL } 1 \\
& 9 / 7 / 90
\end{aligned}
\] & WELL 2
4/10/89 & \begin{tabular}{l}
WELL 4 \\
9/7/90
\end{tabular} & \begin{tabular}{l}
HELL 5 \\
9/7/90
\end{tabular} & WELL 6
\[
9 / 7 / 90
\] & \[
\begin{aligned}
& \text { WELL } 7 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 8 \\
& 9 / 7 / 90 \\
& \hline
\end{aligned}
\] & ** MCJ \\
\hline pH & 6.74 . & 7.23 & 7.26 & 7.74 & 7.88 & 7.29 & 7.12 & \\
\hline Arsenio & \(<0.010^{\circ}\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Barium & <0.25. & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & 1.00 \\
\hline Cadmium & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & 0.01 \\
\hline Chromium & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Iron & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0,05\) & \(<0.05\) & \(<0.05\) & 0.3 \\
\hline Lead & \(<0.005\) & \(<0.0100\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.05 \\
\hline Manganese & \(<0.010\) & \(<0.0100\) & \(<0.039\) & \(<0.037\) & \(<0.028\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Mercury & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & 0.002 \\
\hline Belenium & \(<0.05\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.01 \\
\hline Silver & \(<0.010\) & <0.0100 & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Sodium & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & <11. & \\
\hline Hardness & 79 & 87 & 58 & 58 & 51 & 72 & 72 & \\
\hline Conductivity & 85 & 220 & 150 & 154 & 125 & 189 & 188 & 700 \\
\hline Turbidity & \(<0.2\) & \(<0.4000\) & \(<0.1\) & <0.1 & <0.2 & <0.1 & \(<0.9\) & 1.0 \\
\hline Color & \(<5.0\) & \(<5.0\) & \(<10.0\) & \(<10.0\) & \(<5.0\) & \(<5.0\) & \(<10\). & 15 \\
\hline Fluoride & \(<0.2\) & \(<0.2000\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & <0.2 & <0.2 & 2.0 \\
\hline Nitrate & \(<1.3\) & \(<0.7000\) & \(<0.2\) & \(<0.2\) & <0.2 & \(<0.2\) & \(<1.3\) & 10.0 \\
\hline Chloride & \(\leq 10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & 250 \\
\hline
\end{tabular}
PARTS PER MIKLTON
WATER SAMPLE INFORMATION FOR INORGANIC CHEMICAL ANALYSIS - 1991
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ITEM & WELL 1
\[
7 / 12 / 91
\] & WELL. 2
\[
7 / 12 / 91
\] & WELL 4
\[
7 / 12 / 91
\] & \[
\begin{aligned}
& \text { WELL. } 5 \\
& 7 / 12 / 91 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 6 \\
& 7 / 12 / 91 \\
& \hline
\end{aligned}
\] & WELL 7
\[
7 / 12 / 91
\] & \[
\begin{aligned}
& \text { WELL } 8 \\
& 7 / 12 / 91 \\
& \hline
\end{aligned}
\] & ** MCL \\
\hline pH & 6.6 & 6.4 & 7.3 & & & & & \\
\hline Arsenic & \(<0.010\) & <0.010 & \(\frac{7.3}{<0.010}\) & <0.7 & \(\frac{6.7}{<0.010}\) & 7.1 & 6.8 & \\
\hline Barium & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline \(\frac{\text { Cadmium }}{\text { Chromium }}\) & \(<0.002\) & \(<0.002\) & \(<0.05\) & \(\ll 0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & 1.00 \\
\hline \(\frac{\text { Chromium }}{\text { Iron }}\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.002\) & <0.002 & \(<0.002\) & 0.01 \\
\hline Iron & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Manganese & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & <0.05 & \(<0.05\) & 0.3 \\
\hline Manganese & \(<0.010\) & \(<0.010\) & \(<0.018\) & \(<0.026\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.05 \\
\hline Mercury
Selenium & \(<0.0010\) & \(<0.010\) & \(<0.0010\) & \(<0.0010\) & \(<0.023\) & <0.010 & <0.010 & 0.05 \\
\hline Selenium & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.0010\) & <0.0010 & \(<0.0010\) & 0.002 \\
\hline Silver & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.005\) & \(\leq 0.005\) & \(<0.005\) & 0.01 \\
\hline Sodium & 7. & 6. & 9. & 8.010 & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Hardness & 61 & 66 & 52 & 51 & 5 & 10 & 12 & \\
\hline Conductivity
Tusbidity & 180 & 270 & 120 & \(\underline{130}\) & 43
120 & 61 & 75 & \\
\hline Tusbidity & 0.2 & 0.6 & . 4 & \(<0.3\) & \(\frac{120}{3}\) & 190 & 210 & 700 \\
\hline Color & \(<5.0\) & \(<5.0\) & \(<5.0\) & \(<5.0\) & <5.0 & . 4 & 0.3 & 1.0 \\
\hline Fluoride
Nitrate & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & 5.0 & <5. & 15 \\
\hline Nitrate & 1.2 & \(<1.9\) & 1.8 & \(<0.2\) & \(<0.2\) & < & <0.2 & \\
\hline (mioride & \(<10\) & \(<10\) & \(<10\) & \(<10\) & 21 & 24 & 1.3 & \\
\hline
\end{tabular}
SAMMAMISH PLATEAU WATER AÑD

\section*{1992}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LTEM & WELLL 1
\[
2 / 14 / 92
\] & WELL 2
\[
2 / 14 / 92
\] & HELL 4
\[
2 / 14 / 92
\] & WELC 5
\[
2 / 14 / 92
\] & WBLLL 6
\[
2 / 14 / 92
\] & WELL 7
\[
2 / 14 / 92
\] & WBLLL 8
\[
7 / 12 / 91
\] & ** MCL \\
\hline [H & 7.0 & 7.3 & 7.93 & 8.4 & 8.4 & & & \\
\hline Arsenic & \(<0.010\) & <0.01 & \(<0.01\) & \(<0.01\) & <0.4 & <0.01 & 60.8 & \\
\hline Barium & \(<0.1\) & <0.1 & \(<0.1\) & \(<0.1\) & \(<0.1\) & \(<0.1\) & <0.010 & . .05 \\
\hline Cadmium & <0.002 & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & 1:00 \\
\hline \(\frac{\text { Chromiun }}{\text { Eron }}\) & <0.05 & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.010\) & 0.01 \\
\hline Eron & <0.05 & \(<0.05\) & <0.05 & <0.05 & 0.37 & \(<0.05\) & <0.05 & 0.05 \\
\hline Manganese & <0.002 & <0.002 & <0.0025 & <0.002 & \(<0.002\) & \(<0.002\) & <0.005 & 0.3 \\
\hline Manganese
Mercury & \(\leq 0.01\) & \(<0.01\) & 0.043 & <0.041 & 0.038 & \(<0.01\) & \(<0.010\) & 0.05 \\
\hline Hegcury & \(<0.0002\) & \(<0.0002\) & <0.0002 & <0.0002 & \(<0.0002\) & \(<0.0002\) & \(<0.0010\) & 0.002 \\
\hline Solenium & \(<0.005\) & \(<0.005\) & <0.005 & \(<0.005\) & <0.005 & <0.005 & \(<0.005\) & 0.002 \\
\hline Silvar & \(<0.01\) & \(<0.01\) & <0.01 & <0.01 & <0.01 & <0.01 & \(<0.010\) & 0.01 \\
\hline Sodiura & 9.5 & 6.1 & 8.7 & 8.4 & 4.8 & 10 & < 12.010 & 0.05 \\
\hline garduess & 85. & 75 & 62 & 62 & 56 & 79 & 12 & \\
\hline Couductivity & 180. & 150 & 140 & 140 & 120 & 170 & 75 & \\
\hline turbidity
color & 0.46 & 0.42 & .33 & 0.32 & . 90 & 170 & 210 & 700 \\
\hline color & <5.0 & \(<5.0\) & \(<5.0\) & <5.0 & \(<5,0\) & < 3.32 & 0.3 & 1.0 \\
\hline Miuoride
Nitrate & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.0\) & < 5. & 15 \\
\hline Nitrate & 1.0 & \(<1.8\) & <1.0 & <1.0 & <1, 0 & < 0.5 & <0.2 & 2 \\
\hline Chlorida & \(<20\). & \(<20\) & \(<20\) & \(<20\) & \(<20\) & <1.0 & 1.3 & 10 \\
\hline Sulfate & 10. & \(\leq 10\). & \(<10\). & \(<10\) & \(<10\) & <20 & \(<10\) & 250 \\
\hline Coppax & \(<0.02\) & \(<0.02\) & <0.02 & <0.02 & <0.02 & 11 & & 250 \\
\hline Alac & \(<0.05\) & \(<0.05\) & <0.05 & <0.05 & \(<0.02\) & <0.02 & & 1.0 \\
\hline Aluminum & \(<5.0\) & \(<5.0\) & <5.0 & < 5.0 & \(<5.05\) & \(<0.05\) & & 5.0 \\
\hline calciua & 19. & 18. & 18 & 18 & 16 & \(<5.0\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ITEM & WELL 1 & WELL 2 & WELL 4 & WELL 5 & WELL 6 & WELL 7 7 & WELL 8 & WELL 9 & \(\bigcirc \mathrm{MCL}\) \\
\hline & 3-2-93 & 3-2.93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2.93 & 3-2.93 & \\
\hline , & & & & & & & & & \\
\hline Arsenic & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & 0.05 \\
\hline Barium & < 0.1 & < 0.1 & \(<0.1\) & \(<0.1\) & \(<0.1\) & < 0.1 & \(<0.1\) & \(<0.1\) & \\
\hline Cadmium x , & < 0.002 & < 0.002 & \(<0.002\) & < 0.002 & \(<0.002\) & < 0.002 & \(<0.002\) & < 0.002 & 0.01 \\
\hline & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & 0.05 \\
\hline & < 0.02 & < 0.02 & < 0.02 & < 0.02 & \(<0.02\) & < 0.02 & < 0.02 & < 0.02 & 1.3 \\
\hline & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.17 & 0.3 \\
\hline Lead + \({ }^{\text {a }}\), & \(<0.002\) & \(<0.002\) & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & \(<0.002\) & 0.05 \\
\hline & < 0.01 & \(<0.01\) & < 0.043 & \(<0.041\) & \(<0.092\) & < 0.01 & \(<0.01\) & < 0.01 & 0.05 \\
\hline & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & \(<0.0002\) & 0.002 \\
\hline Selenium mex & \(<0.005\) & \(<0.005\) & < 0.005 & < 0.005 & < 0.005 & < 0.005 & < 0.005 & < 0.005 & 0.01 \\
\hline & < 0.01 & \(<0.01\) & < 0.01 & < 0.01 & \(<0.01\) & < 0.01 & < 0.01 & \(<0.01\) & 0.05 \\
\hline Sodium, \% \ll \({ }^{\text {a }}\) - & 9.1 & 9.3 & 9.0 & 7.7 & 8.4 & 9.5 & 10. & 8.5 & \\
\hline & \(<0.05\) & < 0.05 & < 0.05 & \(\leq 0.05\) & < 0.05 & < 0.05 & < 0.05 & < 0.05 & 5 \\
\hline & 78. & 80 & 65 & 65 & 93 & 79 & 75 & 68 & \\
\hline Conductivity \({ }^{\text {a }}\), & 190 & 150 & 160 & 150 & 210 & 190 & 190 & 160 & 700 \\
\hline & 0.10 & 0.49 & 0.17 & 0.15 & 0.1 & 0.1 & 0.14 & 0.43 & \\
\hline & 5. & 5. & 5. & 5. & 5. & 5. & 5. & 5. & 15 \\
\hline Chlorida S 3, & \(<20\) & \(<20\) & <20 & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & 250 \\
\hline F-horide \({ }^{\text {a }}\), \({ }^{\text {a }}\) & \(<0.5\) & < 0.5 & < 0.5 & < 0.5 & < 0.5 & \(<0.5\) & < 0.5 & \(<0.5\) & 2 \\
\hline Nitrate \({ }^{\text {a }}\), \(0^{2} \times\) & < 1.0 & \(<1.0\) & < 1.0 & \(\leq 1.0\) & \(<1.0\) & \(<1.0\) & \(<1.1\) & \(<1.0\) & 10 \\
\hline Sullate : \% & < 10 & < 10 & < 10 & \(<13\) & \(<10\) & < 10 & < 10 & \(<10\) & 250 \\
\hline
\end{tabular}

\footnotetext{
LEGEND
< Less Than Deleclable Limits
- Maximum Conlaminant Level
}

\title{
GROUND WATER CONTAMINATION \\ Susceptibility Assessment Survey Form
}

\section*{SAMMAMISH PLATEAU WATER \& SEWER DISTRICT \\ 1510 228th Avenue S.E. \\ Issaquah, Washington 98027}

WELL NO. 7

\title{
GROUND WATER CONTAMINATION
}

Susceptibility Assessment Survey Form

\section*{TABLE OF CONTENTS}
- Susceptibility Assessment Survey Form
- Sammamish Plateau Well 7 WHPA Capture Zones
- Well Log
- Water Facilities Inventory Form
- Inorganic Chemical Analysis 1989-1993

\section*{Ground Water Contamination Susceptibility Assessment Survey Form Version 2.1}

\section*{IMPORTANT! Please complete one form for each ground water source (well, wellfield, spring) used in your water system. Photocopy as necessary.}

\section*{PART I: System Information}

Well owner/manager: SAMMIANISH PLATEAU iNAEEZTSEWE2 DIT. Water system name : SAMMANISH RLATEAU WIATERTSEINER OIST
County: \(\qquad\)
Water system number: \(\qquad\) Source number: \(\qquad\)
Well depth: \(\qquad\) 150 (it.) (From WFI form)
Source name: \(\qquad\) WELL 7

WA well identification tag number: \(\qquad\) —_ \(-\) -_ -
\(\qquad\) well not tagged
Number of connections: \(\qquad\) Population served: \(\quad 26,0 C O\)
Township: \(\frac{24 N}{21}\)
Range: \(\qquad\)

1/4 1/4 Section: \(\qquad\) SEISE
Latitude/longitude (if available): \(\qquad\) 1 \(\qquad\)
How was lat./long. determined?
\(\qquad\) global positioning device \(\qquad\) survey \(\qquad\) topographic map
* Please refer to Assistance Packer for details and explanations of all questions in Parts II through V.

PART II:
Well Construction and Source Information
1) Date well originally constructed: 3 , shl/monat/day/year last reconstruction: \(\qquad\) \(1-1\) monch/day/year

\section*{\(\qquad\) \\ information unavailable}
\[
\begin{gathered}
\text { Survey Form Ver. } 2 . \text { : } \\
\text { page : }
\end{gathered}
\]
2) Well driller: \(\qquad\)
Grattan, wi.
\(\qquad\) well driller unknown
3) Type of well:
\(X_{\text {Drilled: }}\) \(\qquad\) rotary \(\qquad\) bored

cable (percussion)
_ Dug
\(\qquad\) Other: \(\qquad\) spring (s) \(\qquad\) lateral collector (Ranney)
\(\qquad\) driven \(\qquad\) jetted \(\qquad\) other: \(\qquad\)
Additional comments: \(\qquad\)
4) Weill report available? \(\square\) YES (attach copy to form) \(\qquad\) NO

If no well \(\log\) is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: \(\qquad\) (gallons/min)

Source of information: \(\qquad\) Water facilities Thuentory

If not documented, how was pumping rate determined? \(\qquad\)
\(\qquad\)
_ Pumping rate unknown
6) Is chis source treated?
\[
Y_{E S} \text {-will be }
\]

If so, what type of treatment:
\(\qquad\) disinfection \(\qquad\) filtration \(\qquad\) carbon tilter \(\qquad\) air stripper \(\square\) other

Purpose of treatment (describe materials to be removed or controlled by treatment):
IN 1994 TREATMENT TO RAISE PH USING
SODIUM HYDROXIDE - FCC COREGSIOM CONTROL TV BE IN FALL OF 1944.
7) If source is chlorinated. is a chlorine residual maintained: \(\qquad\) YES NO

Residual level: \(\qquad\) (At the point closest to the source.)

\section*{PART III: Hydrogeologic Information}
1) Depth to top of open interval: [check one]
\[
\begin{aligned}
& \ldots<20 \mathrm{ft} _20-50 \mathrm{it} \ngtr 50-100 \mathrm{ft}-100-200 \mathrm{ft} —>200 \mathrm{it} \\
& \ldots \text { information unavailable } \quad(\quad<' \text { means less than; '> ' means greater than })
\end{aligned}
\]
2) Depth to ground water (static water level):

\(\qquad\) flowing wellspring (artesian)

How was water level determined?
\(\underline{X}_{\text {well } \log }\) \(\qquad\) other: \(\qquad\)
_ depth to ground water unknown
3) If source is a flowing well or spring, what is the containing pressure:

\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment. reservoir. or catchment associated with this source: \(\qquad\) YES _ NO
5) Wellhead elevation (height above mean sea level): \(\div 72\) (it) (it)

How was elevation determined? \(\qquad\) topographic map \(\qquad\) Drilling/Weil Lug \(\qquad\) altimeter
\(\qquad\) other:
\(\qquad\) information unavailable
6) Confining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please rater to assistance package tor example.)

YES
evidence of a confining layer in well log
_. no evidence of a confining layer in well log
If there is evidence of a confining layer. is the depth to ground water more than 20 feet above the top of the open interval? \(\qquad\) NO
\(\qquad\) information unavailable
\[
\begin{gathered}
\text { Survey Form Vet. } 2.1 \\
\text { sage : }
\end{gathered}
\]
7) Sanitary setback:
— \(\left.<100 \mathrm{ft}^{*}-100-120 \mathrm{it}\right]^{120-200 \mathrm{tt}}>200 \mathrm{it}\) * if less than 100 ft describe the site conditions:
8) Wellhead construction:

wellhead enclosed in a wellhouse controlled access (describe): GATED/LOCICED
_ other uses for weithouse (describe): \(\qquad\)
- no wellhead control
9) Surface seal:
- 18 ft
— < 18 ft (no Department of Ecology approval) ('<'means less than)
_ < 18 ft (Approved by Ecology, inctude documentation) ('<'means less than)
\(\gg 18 \mathrm{tt}\)
('> 'means greater than)
_ depth of seal unknown
_ no surtace seal
10) Annual rainfall (inches per year):
\(\ldots<10 \mathrm{in} / \mathrm{yr}\)
\(\ldots 10-25 \mathrm{in} / \mathrm{yr}\)
\(\chi>25 \mathrm{in} / \mathrm{yr}\)

PART IV: Mapping Your Ground Water Resource
1) Annual volume of water pumped: \(\qquad\) (gallons)

How was this determined?
\(X_{T}\) meter
\(\qquad\) estimated: \(\qquad\) pumping rate \(\qquad\)
_ pump capacity \(\qquad\) - other: \(\qquad\)
2) "Calculated Fixed Radius" estimate of ground water movement: (see Instruction Packet)

6 month ground water travel time :
1 year ground water travel time :
5 year ground water travel time:
10 year ground water travel time:
Information available on length of screened/open interval?
\(\rightarrow\) YES _nO
Length of screened/open interval: \(\qquad\) 85 (t) 1140 2540 3590

The Sammamish Plateau Water + Sewer District (it) Portreipated in the Lower as Figures regarding yotertio contamination sources. A comp. copy of the report is also copy of the report is all \(7 \% \varepsilon\)
include. District well
are considered combined.
3) Is there a river. lake, pond. stream, or other obvious surface water body within the 6 month time of trave! boundary? \(\qquad\) NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon, or holding pond located within the 6 month time of travel boundary?

Comments: \(\qquad\)

\section*{PART V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:
likely pesticide application stormwater injection wells
other injection wells
abandoned ground water well
landfills, dumps, disposal areas
known hazardous materials cleanup site water systems) with known quality problems population density > I house/acre residences commonly have septic tanks
Wastewater treatment lagoons
sites used for land application of waste
Note; We. oed the
one yr. coptwe \(\longrightarrow 6\) month 1 year 5 year unknown zoe

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:
Undeliaround SterilE TAIKS - See attached Figures Table Chinincitac HAndlers

\section*{Luhe/Dil Clianai Facilities}

Car Repitir Stations
DRy Clearlers

Survey Form Var. 2.1
2) Source speciric water quality records:

Please indicate the occurrence or any test results since 1986 that meet the tollowing conditions: (Uniess listed on assessment, MCLs are listed in assistance package.)
A. Nitrare: (Nitrate MCL \(=10 \mathrm{mg} / \mathrm{l}\))

Results greater than MCL
< \(2 \mathrm{mg} / \mathrm{liter}\) nitrate
2-5 mg/liter nitrate
\(>5 \mathrm{mg} /\) liter nitrate
YES NO
Х

__ Nitrate sampling records unavailable
3. VOCs: (VOC detection level \(0.5 \mathrm{ug} / \mathrm{l}\) or \(0.0005 \mathrm{mg} / \mathrm{l}\).)

Results greater than MCL or SAL
VOCs detected at least once
VOCs never detected

_ VOC sampling records unavailable
C. EDB/DBCP:

YES NQ
(\(\mathrm{EDB} \mathrm{MCL}=0.05 \mathrm{ug} / \mathrm{l}\) or \(0.00005 \mathrm{mg} / \mathrm{I} . \mathrm{DBCP} \mathrm{MCL}=0.2 \mathrm{ug} / \mathrm{l}\) or 0.0002 mg l.)
EDB/DBCP detected below MCL at teast ance EDB/DBCP detected above MCL at least once EDB/DBCP never detecred

EDE/OBCP tests required but not yet compiered
EDB/DBCP tests not required

> Other SOC tests performed but none detected (list test methods in comments
> Other SOC tests not performed

If any SOCs in addition to EDB/DBCP were derected. please idencity and dite. If uther SOC tests were perriormed. but no SOCs detected. list test methods here: \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{E. Bacterial contamination:}

YES
Any bacterial detections) in the past 3 years in samples taken from the source (not distribution sampling records).

Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source.
\(\qquad\) Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circuiar Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a systern develops iss Wellhead Protection Plan tor theses sources, a more detailed delineation method should be considered.
1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)

_ NO
Describe with references to map produced in Part IV:

\section*{ISSACMAAH
STEEP HILL
2) Aquifer Material:}
A) Does the drilling log, well \(\log\) or other geologic/engineering reports identity that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?
\[
\ldots \text { YES } \quad \text { I NO }
\]
B) Does the drilling log, well log or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?

3) Is the source located in an aquifer with a high horizontal tow rate? (These can include sources located on Aloud plains of large rivers, artesian wells with high water pressure. and/or shallow flowing wails and springs.)
- NO
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs?
a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
\(<6\) month travel time
6 month -1 year travel time
1-5 year travel time
5-10 year travel time

b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...
\(<1\) year travel time

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference therm to locations on the map produced in Part IV.
- See Lower Issagush Valley Wellhead Protection Plan

Distort Wells 7+8 are considered together.
The District \(s\) currently applying for a Well Field designation

\section*{Suggestions and Comments}
Oid you attend one of the suscepribility workshoos?
Oid you find it useful?

Oid you seek outside assistance to complete the assessment? XYES NO

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Ver. 2.1
page 10

FET
Agurg
FiVE YEAA GAPTLRE ZONE FCR YACCLCTCN 'NE:''S

TEN YEAR CAPTURE ZCNE FOR FRCDUCTICN WELIS

- - Five year eapture zene

Sites 1. 3. 5. 8. 18. 19, 21,
22. 24, and 31 ars outside the immediate vicirity of espture zones

UNDERGROUND STORAGE TANKS IN VICINITY OF I-YR AND G-YA CAPTURE ZONES

13
- Cremieal Handiers
(Chemical handier reference number)
4 Onsite Ory Cleaners
(Chemical handlor reference number)
One year capture zones
- Five year eaptura zone

Favas 26
CHEMICAL HANDLER LOCATIONS IN VICINTTY OF 1.YR AND J-YR CAPTURE ZCNES

Sammamish Plateau Water \& Sewer District
Well 7

'LEGEND'

November 15, 1993
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Source Type/Number & Owner & Contaminant & Qumntily Onsile (gallons) & Previous Quantilies & Number of Operational Tanks \\
\hline 1-YR WH IPA - COI 1/2 & \[
\begin{aligned}
& \text { UST. } 14 \\
& \text { CI1-10 } \\
& \text { C11-11 } \\
& \text { UST-4 }
\end{aligned}
\] & Rede Transportation Cifinan Aulo Body Cengen Supply Grauge Supply & Gasoline Solvent Solvent Gnsoline & \[
\begin{gathered}
20,000 \\
55 \\
55 \\
70,000
\end{gathered}
\] & \begin{tabular}{l}
NA \\
NA \\
NA \\
NA
\end{tabular} & \\
\hline 1-YK WIIPA - COS 45 & None & & & & & \\
\hline 1-YK WIIPA - SPWSD 78 & \begin{tabular}{l}
Cl-15 \\
UST-17 US5-28 UST. 34 UST-37
\end{tabular} & Precision Tune Glevron B.P. Arco Texaco & Waste oil Gesoline Gasoline Gasoline Gasoline & \[
\begin{gathered}
500 \\
60,000 \\
82,400 \\
81,100 \\
80,000
\end{gathered}
\] & \begin{tabular}{l}
NA \\
NA \\
NA \\
NA
\end{tabular} & \[
\begin{aligned}
& 3 \\
& 5 \\
& 5 \\
& 4
\end{aligned}
\] \\
\hline 5-YK WIIPA & \begin{tabular}{l}
UST-33 \\
UST-16 \\
UST. 17 \\
UST-2 \\
UST-34 \\
UST-37 \\
UST-29 \\
Cl. 6 \\
Cll-5 \\
Cll-12
\end{tabular} & Lakeside Closed Ghevion B.P. Arco Texaco Darigold Dirks Dry Clean Daigold L.akeslde & Gasoline
Gasoline
Gnsoline
Gasoline
Gasoline
Gasoline
Gasoline
Solvent
Diesel
Weste OUVSolvent & \[
\begin{gathered}
61,600 \\
0 \\
60,000 \\
82,200 \\
81,000 \\
80,000 \\
60,000 \\
55 \\
\text { NA } \\
500050
\end{gathered}
\] & \[
\begin{gathered}
\text { NA } \\
3,300 \\
\text { NA } \\
\text { NA } \\
122,200 \\
\text { NA } \\
60,0004+ \\
\text { NA } \\
\text { NA } \\
\text { NA }
\end{gathered}
\] & \[
\begin{aligned}
& 5 \\
& 0 \\
& 3 \\
& 5 \\
& 5 \\
& 4 \\
& 3
\end{aligned}
\] \\
\hline 10-YK WIIPA & \begin{tabular}{l}
UST-15 \\
UST-20 \\
UST. 6 \\
UST-23 \\
UST-25 \\
UST-35 \\
UST-36
\end{tabular} & Issaquath feed Mobil (closed) Texeco lssaquah Middle School Cank Elementary Hus Garage Transporiation & \begin{tabular}{l}
Gasolicue \\
Gasoline \\
Gasoline \\
Gasolina \\
Gasoline \\
Gazoline \\
Casolline
\end{tabular} & \[
\begin{gathered}
0 \\
30,000^{101} \\
50,000 \\
30,000 \\
1,100 \\
0 \\
60,000
\end{gathered}
\] & \[
\begin{gathered}
4,400 \\
51,100 \\
\text { NA } \\
31,300 \\
2,200 \\
11,100 \\
\text { NA }
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 3 \\
& 2 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
III stolus unknown
\({ }^{1}\) closed in-pluce
NA Nut availatsle
}

(4) TYPE OF WORE:

(5) DLMENSIONS:

Dinmatar of well -16 \(\qquad\) meher.

(6) CONSTRUCTION DETAILS:

Casing installed: 16
\(\qquad\) - Damm toc

0
tit \(82.5_{t}\)
 \(\qquad\) - Dum. trom \(\qquad\) the 10 to

Perforations: Yes \(]\) Nog
Type of pertorator uned.
StzI of pertorationa \(\qquad\) in. by \(\qquad\) pertoratione trom
t.t to tir persorations trom pertoretionen tram
 t th + a

 Trpe_304 SS

Diam 14-pStiot stay - 100 trom - 82-8nt to 103- it

 ———a
 saterial ured in seav. Drd any ytritic contain unamble water Yea \(\square\) No, type ot wremt Deper of struth \(\stackrel{N}{\mathrm{Na}}\) Method of seeling strata oe
(7) PUMP: sanutacturars Name
Type:
 Artackan premurs \(\qquad\) ane pere satiare trech Dite
Arevian water is cantrolled by
(cap. चilve etce.)
(9) WETL TESTS:

Drawdown in amount water level is lowned balow state toval

\(\qquad\)

(10) WELL LOG:

 WELL DRILLER'S STATEMENT:

This well was drilled under my jurisdiction and this report is tue to the best of any conowledge and beile!.

NAME Hokkafdo Drilling \& Dev. Corp.
(Pexoon ivm or comporacion) (Tvpe or prati)
Addresero. \(30 \times 100\) geabam, NA
[Signed
License . Yo... 0492 \(\qquad\)
\(\qquad\)

SPW\&SD WELLS 7 \& 8

PUMPING WELLS

Environmental Heasth

\section*{WATER FACILITIES INVENTORY (WFI)}

Read instructions on back before completing

FEB 11994
has'd
2 IC

\[
\begin{array}{lllllllll}
n & 0 & 0 & 0 & m & 0 & n & 0 & 0 \\
0 & n \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
\[
\begin{array}{llll}
n & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\sim & n & n & 0
\end{array}
\]
\[
\begin{aligned}
& 0 \\
& \vdots \\
& \hline
\end{aligned}
\]
\[
\begin{aligned}
& \text { 응 } \\
& \stackrel{0}{\circ}
\end{aligned}
\]
\[
\begin{aligned}
& N \\
& 0 \\
& 0
\end{aligned}
\]
\[
0
\]
ph
\[
\begin{aligned}
& 7.06 \\
& 0.010
\end{aligned}
\]
\[
0.25
\]
\[
\because 0.002
\]
\[
0.010
\]
\[
0.05
\]
\[
0.010
\]
\[
\cdot 0.005
\]
SAFPAFISH FLRTLAU I:ATER \& SEVER DISTRICT
FRTER SAIIFLE INFOFHRTICA TDR INOPGRNIC CYEDICAL RFALYSES - ICEg
\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]
\[
0.05
\]
....
\[
0.2
\]
\[
\text { - } \mathrm{HCL}
\]
\[
8
\]
\[
\begin{aligned}
& 0 \\
& \ddot{0}
\end{aligned}
\]
은
웅
\[
\underset{0}{r}
\]
은
\[
\begin{aligned}
& N \\
& 0 \\
& 0
\end{aligned}
\]
\[
0.010
\]
\[
0.0010
\]
\[
0.010
\]
\[
0.1
\]
\[
5.0
\]
\[
* 0.2
\]
\[
\begin{array}{ll}
\text { HELL } 2 & \text { FELL A } \\
\text { 4/10/B9 } & \text { A/10/E9 }
\end{array}
\]
\[
\begin{aligned}
& 7.23 \\
& 0.010
\end{aligned}
\]
\[
0.25
\]
\[
0.002
\]
\[
\cdot 0.010
\]
\[
0.05
\]
\[
0.010
\]
\[
0.010
\]
\[
0.0080
\]
\[
0.005
\]
\[
220
\]
\[
0.4
\]
\[
0.2
\]
\[
0.22
\]
\[
\$ 0.010
\]
\[
0.25
\]
\[
0.002
\]
\[
0.010
\]
\[
0.05
\]
\[
0.010
\]
\[
0.041
\]
\[
0.0010
\]
\[
0.005
\]
\[
63
\]
\[
0.2
\]
\[
0.2
\]
\[
\begin{aligned}
& 8.32 \\
& * 0.010 \\
& * 0.25 \\
& * 0.002 \\
& * 0.010 \\
& * 0.05 \\
& * 0.010 \\
& 0.042 \\
& 10.0010 \\
& * 0.005 \\
& * 0.010 \\
& 110 \\
& 61 \\
& 150 \\
& * 0.1 \\
& * 5.0 \\
& * 0.2 \\
& * 0.2 \\
& * 10
\end{aligned}
\]
\[
\begin{aligned}
& \text { FELL } 6 \\
& 7 / 17 / E 9
\end{aligned}
\]
\[
7.46
\]
\[
0.010
\]
\[
0.0 .25
\]
\[
0.0 .02
\]
\[
0.010
\]
\[
\cdot 0.05
\]
\[
0.010
\]
\[
0.026
\]
\[
0.0010
\]
\[
0.005
\]
\[
0.080
\]
\[
48
\]
\[
\begin{aligned}
& 120 \\
& 10.1
\end{aligned}
\]
\[
0
\]
\[
\begin{array}{r}
5.0 \\
\cdot 0.2
\end{array}
\]
\[
10
\]
- HCL Is the fextrur Centemitient level Alfonts PER HILIION
tiess Then

AnTest/ing

Ar.Tesf/1~k
\[
\begin{array}{ll}
\text { KELL } 7 & \text { KELL } 8 \\
7 / 17 / E 9 & \angle / 10 / E 9
\end{array}
\]
\[
\begin{aligned}
& 7.48 \\
& 80.010
\end{aligned}
\]
\[
0.25
\]
\[
0.002
\]
\[
0.010
\]
\[
0.010
\]
\[
0.0610
\]
\[
0.005
\]
\[
0.010
\]
\[
0.2
\]
\[
15.0
\]
\[
\begin{aligned}
& 1.6 \\
& .10
\end{aligned}
\]
\[
\begin{aligned}
& 7.05 \\
& * 0.010 \\
& 0.25 \\
& * 0.102 \\
& 0.080
\end{aligned}
\]
\[
0.05
\]
\[
\begin{aligned}
& 0.005 \\
& 0.010
\end{aligned}
\]
\[
\begin{aligned}
& 10 \\
& 01 .
\end{aligned}
\]
\[
\cdot 0.1
\]
\[
\begin{aligned}
& 0 \\
& \stackrel{0}{c} \\
& c
\end{aligned}
\]
은
\[
\begin{aligned}
& 8 \\
& 0
\end{aligned}
\]
\[
\begin{aligned}
& 0 \\
& n \\
& n
\end{aligned}
\]
\[
\begin{aligned}
& \text { r } \\
& \ddot{0}
\end{aligned}
\]
을
\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\]
\[
\therefore
\]
\[
\begin{aligned}
& 0 \\
& \because \\
& \because
\end{aligned}
\]
\[
\begin{aligned}
& \text { r} \\
& 0 \\
& 0
\end{aligned}
\]
은
은
\(\qquad\) 155
\[
\because
\]
ITEM
BAMMAMIEH PLATEAU HATER AND BEWER DISTRICT
WATER BAMPLE INFORMATION FOR INORGANIC CHEMICAL ANALYBLB - 1990
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ITEM & \[
\begin{aligned}
& \text { WELL } 1 \\
& 9 / 7 / 90
\end{aligned}
\] & WELIL 2
\[
4 / 10 / 89
\] & WELL 4
\[
9 / 7 / 90
\] & \[
\begin{aligned}
& \text { WELL } 5 \\
& 9 / 7 / 90 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 6 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 7 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL. } 8 \\
& 9 / 7 / 90 \\
& \hline
\end{aligned}
\] & ** MCL \\
\hline pH & 6.74 . & 7.23 & 7.26 & 7.74 & 7.88 & 7.29 & 7.12 & \\
\hline Arsenic & <0.010 & \(<0.010\) & \(<0.010\) & <0.010 & \(<0.010\) & \(<0.010\) & <0.010 & 0.05 \\
\hline Barium & \(<0.25\). & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & 1.00 \\
\hline Cadmium & \(<0.002\) & \(<0.002\) & \(<0.002\) & <0.002 & \(<0.002\) & \(<0.002\) & \(<0.002\) & 0.01 \\
\hline chromium & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & <0.010 & <0.010 & \(<0.010\) & 0.05 \\
\hline Iron & \(<0.05\) & \(<0.05\) & \(<0.05\) & <0.05 & <0,05 & \(<0.05\) & \(<0.05\) & 0.3 \\
\hline I.ead & <0.005 & \(<0.0100\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.05 \\
\hline Manganese & <0.010 & \(<0.0100\) & \(<0.039\) & \(<0.037\) & <0.028 & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Mercury & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & 0.002 \\
\hline Belenium & <0.05 & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.01 \\
\hline gilver & \(<0.010\) & \(<0.0100\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & <0.010 & <0.010 & 0.05 \\
\hline Sodium & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<11\) & \\
\hline Hardness & 79 & 87 & 58 & 58 & 51 & 72 & 72 & \\
\hline Conductivity & 85 & 220 & 150 & 154 & 125 & 189 & 188 & 700 \\
\hline Turbidity & \(<0.2\) & \(<0.4000\) & \(<0.1\) & \(<0.1\) & <0.2 & \(<0.1\) & \(<0.9\) & 1.0 \\
\hline Color & \(<5.0\) & \(<5.0\) & \(<10.0\) & <10.0 & \(<5.0\) & \(<5.0\) & \(<10\). & 15 \\
\hline F1uoride & \(<0.2\) & \(<0.2000\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & 2.0 \\
\hline Nitrate & <1.3 & \(<0.7000\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<1.3\) & 10.0 \\
\hline chloride & \(<10\) & \(<10\) & \(<10\) & <10 & \(<10\) & \(<10\) & \(<10\) & 250 \\
\hline
\end{tabular}
PARTB PER MILLION
SAMMAMISH PLATEAU WATER AND SEWER DISTRICT
WATER SAMPLE INFORMATION FOR INORGANIC CHEMICAL ANALYSIS - 1991
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline I'EM & \[
\begin{aligned}
& \text { WELL } 1 \\
& 7 / 12 / 91
\end{aligned}
\] & WELL 2
\[
7 / 12 / 91
\] & WELL 4
\[
7 / 12 / 91
\] & \[
\begin{aligned}
& \text { WELL } 5 \\
& 7 / 12 / 91 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL. } 6 \\
& 7 / 12 / 91
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL. } 7 \\
& 7 / 12 / 91
\end{aligned}
\] & WELL 8
\[
7 / 12 / 91
\] & ** MCL \\
\hline PlI & 6.6 & 6.4 & 7.3 & & & & & \\
\hline Arsenic & \(<0.010\) & <0.010 & \(\frac{7.3}{<0.010}\) & <0.7 & < 6.7 & \(\frac{7.1}{}\) & 6.8 & \\
\hline Barium & \(<0.25\) & \(<0.25\) & \(<0.010\) & \(<0.01\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Cadmium & \(<0.002\) & \(<0.002\) & \(<0.002\) & <0.25 & \(<0.25\) & \(<0.25\) & \(<0.25\) & 1.00 \\
\hline Chromium & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & 0.01 \\
\hline Iton & \(<0.05\) & \(<0.05\) & \(<0.010\) & \(<0.010\) & <0.010 & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Mead & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & 0.3 \\
\hline Manganese & \(<0.010\) & \(<0.010\) & \(<0.018\) & \(<0.026\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.05 \\
\hline Mercury & \(<0.0010\) & \(<0.010\) & \(<0.0010\) & -0.0010 & \(<0.023\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Selenium & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(\frac{<0.0010}{<0.005}\) & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & 0.002 \\
\hline Silver & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.01 \\
\hline Sodium & 7. & 6. & 9. & - 8 8.010 & <0.010 & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Conduess & 61 & 66 & 52 & 8 & 5 & 10 & 12 & \\
\hline \(\frac{\text { Conductivity }}{\text { Turbidity }}\) & 180 & 270 & 120 & 130 & 43 & 61 & 75 & \\
\hline Turbidity
color & 0.2 & 0.6 & . 4 & \(<0.3\) & 12 & 190 & 210 & 700 \\
\hline Color & <5.0 & \(<5.0\) & \(<5.0\) & \(<5.0\) & \(<5\) & . 4 & 0.3 & 1.0 \\
\hline Fluoride & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & <5. & \(<5.0\) & \(<5\). & 15 \\
\hline chicoride & 1.2 & \(<1.9\) & 1.8 & <0.2 & \(<0\) & \(<0.2\) & \(<0.2\) & \\
\hline chioride & \(<10\) & \(<10\) & <10 & \(<10{ }^{\circ}\) & 21 & \(<0\) & 1.3 & \\
\hline
\end{tabular}
1992
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { WBLLL } 6 \\
& 2 / 14 / 92 \\
& \hline
\end{aligned}
\] & WELL 7
\[
2 / 14 / 92
\] & WELI \(:\)
\[
7 / 12 / 91
\] & ** HCL \\
\hline B. 4 & 7.7 & 6.8 & \\
\hline <0.01 & <0.01 & \(<0.010\) & . 05 \\
\hline <0.1 & <0.1 & <0.25 & 1.00 \\
\hline <0.002 & <0.002 & \(<0.002\) & 0.01 \\
\hline <0.05 & \(<0.05\) & <0.010 & 0.05 \\
\hline 0.37 & <0.05 & \(\leq 0.05\) & 0.3 \\
\hline \(<0.002\) & \(<0.002\) & \(<0.005\) & 0.05 \\
\hline 0.038 & <0.01 & \(<0.010\) & 0.05 \\
\hline \(<0.0002\) & \(<0.0002\) & <0.0010 & 0.002 \\
\hline <0.005 & \(<0.005\) & \(<0.005\) & 0.01 \\
\hline <0.01 & \(<0.01\) & <0.010 & 0.05 \\
\hline 4.8 & 10 & 12 & \\
\hline 56 & 79 & 75 & \\
\hline 120 & 170 & 210 & 700 \\
\hline .90 & . 32 & 0.3 & 1.0 \\
\hline \(<5.0\) & \(<5.0\) & \(<5\). & 15 \\
\hline \(<0.5\) & <0.5 & \(<0.2\) & 2 \\
\hline \(<1.0\) & <1.0 & 1.3 & 10 \\
\hline \(<20\) & \(\leq 20\) & \(<10\) & 250 \\
\hline \(\leqslant 10\) & 11 & & 250 \\
\hline \(<0.02\) & \(<0.02\) & & 1.0 \\
\hline \(<0.05\) & <0.05 & & 5.0 \\
\hline \(<5.0\) & <5.0 & & \\
\hline 16 & 20. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline HEM & WELL' 1 & WELL 2 \% & WELL4, & WELL 5: & WELL 6 & WELL 7 \% \({ }^{\text {c }}\) & WELL B & WELL 9 & \(\because \mathrm{MGL}\) \\
\hline 0 & 3-2-93 & 3-2.93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2.93 & 3-2-93 & 3-2.93 & \\
\hline - & & & & & & & & & \\
\hline Arsenic - & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & 0.05 \\
\hline Garium & \(<0.1\) & \(<0.1\) & < 0.1 & \(<0.1\) & < 0.1 & < 0.1 & < 0.1 & \(<0.1\) & 1 \\
\hline Cadmium \(\times\) & \(<0.002\) & \(<0.002\) & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & 0.01 \\
\hline Clurniutrin ex & < 0.05 & < 0.05 & \(<0.05\) & < 0.05 & \(<0.05\) & \(<0.05\) & < 0.05 & < 0.05 & 0.05 \\
\hline & < 0.02 & < 0.02 & \(<0.02\) & \(<0.02\) & < 0.02 & < 0.02 & < 0.02 & < 0.02 & . 3 \\
\hline & < 0.05 & < 0.05 & < 0.05 & \(<0.05\) & < 0.05 & < 0.05 & < 0.05 & \(<0.17\) & 0.3 \\
\hline Lead Wo C & < 0.002 & \(<0.002\) & \(<0.002\) & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & 0.05 \\
\hline Manganese\%\%s. \({ }^{\text {\% }}\), & < 0.01 & \(<0.01\) & < 0.043 & < 0.041 & \(<0.092\) & \(<0.01\) & \(\leq 0.01\) & < 0.01 & 0.05 \\
\hline & \(<0.0002\) & < 0.0002 & \(<0.0002\) & <0.0002 & < 0.0002 & < 0.0002 & <0.0002 & < 0.0002 & 0.002 \\
\hline Selenium mix \% \({ }^{\text {a }}\) & \(<0.005\) & < 0.005 & \(<0.005\) & < 0.005 & \(<0.005\) & \(<0.005\) & <0.005 & < 0.005 & 0.01 \\
\hline & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & \(<0.01\) & < 0.01 & < 0.01 & 0.05 \\
\hline & 9.1 & 9.3 & 9.0 & 7.7 & 8.4 & 9.5 & 10. & 8.5 & \\
\hline & < 0.05 & < 0.05 & \(<0.05\) & < 0.05 & < 0.05 & <0.05 & < 0.05 & < 0.05 & 5 \\
\hline Hardness & 78. & 80 & 65 & 65 & 93 & 79 & 75 & 68 & \\
\hline Conduclivily \% m & 190 & 150 & 160 & 150 & 210 & 190 & 190 & 160 & 700 \\
\hline Tubidity, \(\mathrm{S}^{\text {a }}\), \({ }^{2}\) & 0.10 & 0.49 & 0.17 & 0.15 & 0.1 & 0.1 & 0.14 & 0.43 & 1 \\
\hline & 5. & 5. & 5. & 5. & 5. & 5. & 5. & 5. & 15 \\
\hline & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & 250 \\
\hline Fluoride 2.20 & < 0.5 & < 0.5 & \(<0.5\) & \(<0.5\) & < 0.5 & < 0.5 & \(<0.5\) & \(<0.5\) & 2 \\
\hline Nitrate : \(\%\), & < 1.0 & \(<1.0\) & \(<1.0\) & \(<1.0\) & < 1.0 & \(<1.0\) & < 1.1 & \(<1.0\) & 10 \\
\hline Sullate & < 10 & \(<10\) & < 10 & \(<13\) & < 10 & \(<10\) & \(<10\) & \(<10\) & 250 \\
\hline
\end{tabular}

\footnotetext{
LEGEND
< Less Than Delectable Limils
}

\title{
GROUND WATER CONTAMINATION \\ Susceptibility Assessment Survey Form
}

\section*{SAMMAMISH PLATEAU WATER \& SEWER DISTRICT \\ 1510 228th Avenue S.E. \\ Issaquah, Washington 98027}

WELL NO. 8

\title{
GROUND WATER CONTAMINATION Susceptibility Assessment Survey Form
}

\section*{TABLE OF CONTENTS}
- Susceptibility Assessment Survey Form
- Sammamish Plateau Well 8 WHPA Capture Zones
- Well Log
- Water Facilities Inventory Form
- Inorganic Chemical Analysis 1989-1993

ONE YEAR CAPTURE ZONES FOR PRCDUCTICN 'NEILS

FEET
FgURE 18
FIVE YEAR CAPTURE ZCNE FCR PRCCUCTICN NE:LS

FEET
maves 24
UNDERGROUND STORAGE TANKS IN VICINITY OF 10-YR CAPTURE ZCNE

नGuat 26
CHEMICAL HANDLER LOCATIONS IN VICINITY OF 1-YR AND 5 YYR CAPTURE ZONES SAMMNAKEH HATEAUNHP STLDYNA

I \(\int^{13}\) Chemical Handlers
(Chemical handler reference number)
\({ }^{4}\) Onsite Dry Cleaners
(Chemical handler reterenca number)
- - Ten year eapture zone

Sites 7 and 14 are not within map range
mavag 27
CHEMICAL HANDLER LOCATIONS IN VICINITY OF 10 -YEAR CAPTURE ZONE sMMMMSH PATEAUMHHP TTUOYNA
November 15, 1993
SUMMARY USTS AND CHEMICAL HANDLERS IN WHPA'S
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Suurce Type/Number & Owner & Contaruinait & Quartity Onsile (galons) & Previous Quantities & Number of Operational 'Tank \\
\hline 1-YK WHIPA - COI 1/2 & \begin{tabular}{l}
UST-14 \\
Cliflo \\
CH-11 \\
USI-4
\end{tabular} & Reda Transportation Gillman Auto Body Grange Supply Grange Supply & \begin{tabular}{l}
Casoline \\
Solvent \\
Solvent \\
Cusoline
\end{tabular} & \[
\begin{gathered}
20,000 \\
55 \\
\mathbf{5 5} \\
\mathbf{7 0 , 0 0 0}
\end{gathered}
\] & NA NA NA NA & \\
\hline 1-YK WIIPA - COI 45 & None & & & & & \\
\hline 1-YK WIIPA - SPWSO 7M & \begin{tabular}{l}
C14-15 \\
UST-17 \\
USI-28 \\
UST-34 \\
UST-37
\end{tabular} & Precision Tune Chevron B.P. Arcis Texaco & \begin{tabular}{l}
Wasle oit \\
Cusoline \\
Gasolize \\
Gasclitre \\
Casoline
\end{tabular} & \[
\begin{gathered}
500 \\
60,000 \\
82,210 \\
81,100 \\
80,000
\end{gathered}
\] & \begin{tabular}{l}
Na \\
NA \\
NA \\
NA
\end{tabular} & \[
\begin{aligned}
& 3 \\
& 5 \\
& 5 \\
& 4
\end{aligned}
\] \\
\hline 5-YK WIIPA & UST-33 USI-16 UST-17 USI-28 UST. 34 UST-37 UST-29 C1H Cll. 5 CH-32 & Lakeside Closed Chevron B.P. Asco Texaco Durigold Dirks Dry Clean Darigold Lenkeside & Casoline Gasuline Gasoline Gasoline Gasulint Casuline Casolint Solvent Dieset Waste Oil/Sotvent & \[
\begin{gathered}
61,000 \\
0 \\
60,000 \\
82,200 \\
81,000 \\
80,000 \\
60,000 \\
55 \\
\mathrm{NA} \\
500040
\end{gathered}
\] & \[
\begin{gathered}
\text { NA } \\
3,310 \\
\text { NA } \\
\text { NA } \\
122,200 \\
\text { NA } \\
60,000+ \\
\text { NA } \\
\text { NA } \\
\text { NA }
\end{gathered}
\] & \[
5
\] \\
\hline 10-YK WIIPA & UST-15 UST-20 UST-6 UST-23 USil:25 UST-35 UST-36 & Issaquah Feed Mubil (closed) Texeco Issaquah Midatle School Clark Elementery Hus Garage Transportation & \begin{tabular}{l}
Gasoline \\
Gasoline \\
Cusoline \\
Gasolin* \\
Garoline \\
Gasoline \\
Gasoline
\end{tabular} & \[
\begin{gathered}
30,00001110 \\
50,000 \\
30,000 \\
1,100 \\
0 \\
60,000 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1,400 \\
51,100 \\
N A \\
31,100 \\
2,200 \\
11,100 \\
N A
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 1 \\
& 3 \\
& 2 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline
\end{tabular}
[1) status anknown
(2) clused lit-plucue
NA Nut evailuble
(1) OWNER
DISTRICT Ad
1510228 th SE
) LOCATION OF WELL: County_KING Fazing and distance from unction or subdivision corner

 Dr d any strata contain unumble watery year No \(\underset{y}{8}\) Type of water? Depute of strata Method of sealing irate on_
(7) PUMP: Manufacturer's Nama Type:

(9) WELL TESTS
wain a pump teat made Yes field: 1977 z al. \(/ \mathrm{min}\). with

Drawdown is m mount water level i lowered below static level
 22 t. drawdown after \& \(x\) hrs.

 accursed from wail

Date of ter
weer ter
[ni /min. with \(\qquad\) fe. draweown after \(\qquad\) hr. reason how \(\qquad\)
\(\qquad\) Was a chemical analysis made Year No :

\section*{(10) WELL LOG:}

\section*{WELL DRILLERS STATEMENT:}

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
 Address Graham, viA
[Signed]

Oui

License No \(/ 23 \overline{7}\)
we

\section*{＇}

Environmental Health

\section*{WATER FACILITIES INVENTORY（WFI）}

Read Instructions on back before completing
 jpuateo
1994

\section*{FE日}

Ans＇d

T

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{23．SOUACE LGCATEN} \\
\hline 1／4．1／4 sec． t． & & \(\int^{4}\) & anc． \\
\hline SH／ME & 10 & 24 N & O0： \\
\hline Nid／SE & 11 & 24N & O5E \\
\hline FW／SN & 34 & 2 CH & \\
\hline SW／PAH & 74 & 2511 & OAF \\
\hline NE／JE & 32 & く¢ & つの守 \\
\hline SE／SE & 21 & 12414 & 106： \\
\hline S5／SE & 31 & P6ヶ！ & 人Aㄷ． \\
\hline
\end{tabular}
mainum recuined bactearglgeical sampung scheoule

SAFPRAISH FLATEAU I:ATER \& SEFER DISTRICT

BAMMAMIBH PLATEAU WATER AND SEWER DIBTRICT
WATER BAMPLE INFORMATYON FOR INORGANIC CHEMICAL ANALYBIS - 1990
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline I'IEM & \[
\begin{aligned}
& \text { WELL } 1 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { NELL } 2 \\
& 4 / 10 / 89
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 4 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELLS } 5 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 6 \\
& 9 / 7 / 90
\end{aligned}
\] & \[
\begin{aligned}
& \text { WELL } 7 \\
& 9 / 7 / 90 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { HELL } 8 \\
& 9 / 7 / 90
\end{aligned}
\] & ** MCL \\
\hline pII & 6.74. & 7.23 & 7.26 & 7.74 & 7.88 & 7.29 & 7.12 & \\
\hline Argenio & \(<0.010^{\circ}\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Barium & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & 1.00 \\
\hline Cadmium & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & 0.01 \\
\hline Chromium & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Iron & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & <0.05 & <0.05 & \(<0.05\) & 0.3 \\
\hline Lead & \(<0.005\) & \(<0.0100\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.05 \\
\hline Manganese & \(<0.010\) & \(<0.0100\) & \(<0.039\) & \(<0.037\) & \(<0.028\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Mercury & <0.0010 & \(<0.0010\) & \(<0.0010\) & \(<0.0010\) & <0.0010 & \(<0.0010\) & \(<0.0010\) & 0.002 \\
\hline Belenium & \(<0.05\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.01 \\
\hline silver & \(<0.010\) & \(<0.0100\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Sodium & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & \(<11\) & \\
\hline Hardness & 79 & 87 & 58 & 58 & 51 & 72 & 72 & \\
\hline Conductivity & 85 & 220 & 150 & 154 & 125 & 189 & 188 & 700 \\
\hline Turbidity & \(<0.2\) & \(<0.4000\) & \(<0.1\) & <0.1 & \(<0.2\) & \(<0.1\) & \(<0.9\) & 1.0 \\
\hline Color & \(<5.0\) & \(<5.0\) & \(<10.0\) & \(<10.0\) & \(<5.0\) & \(<5.0\) & <10. & 15 \\
\hline Fluoride & \(<0.2\) & <0.2000 & \(<0.2\) & <0.2 & \(<0.2\) & \(<0.2\) & \(<0.2\) & 2.0 \\
\hline Nitrate & \(<1.3\) & \(<0.7000\) & \(<0.2\) & \(<0.2\) & <0.2 & \(<0.2\) & \(<1.3\) & 10.0 \\
\hline chloride & \(\leq 10\) & \(<10\) & \(<10\) & \(<10\) & \(<10\) & <10 & \(<10\) & 250 \\
\hline
\end{tabular}
PARTS PER MILLION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 TEM & WELL 1
\[
7 / 12 / 91
\] & WELL 2
\[
7 / 12 / 91
\] & WELL 4
\[
7 / 12 / 91
\] & \[
\begin{aligned}
& \text { WELL. } 5 \\
& 7 / 12 / 91
\end{aligned}
\] & WELL 6
\[
7 / 12 / 91
\] & \[
\begin{aligned}
& \text { WELL } 7 \\
& 7 / 12 / 91 \\
& \hline
\end{aligned}
\] & WELL 8
\[
7 / 12 / 91
\] & ** MCL \\
\hline pH & 6.6 & 6.4 & 7.3 & 6.7 & 6.7 & 7.1 & & \\
\hline Arsenic & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & <0.7 & \(\frac{7.1}{<0.010}\) & 6.8 & \\
\hline Barium & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.25\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline Cadmium & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.002\) & \(<0.25\) & \(<0.25\) & 1.00 \\
\hline Chromium & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.010\) & \(<0.002\) & \(<0.002\) & 0.01 \\
\hline Iron & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & & \(<0.010\) & <0.010 & 0.05 \\
\hline Lead & <0.005 & \(<0.005\) & \(<0.005\) & \(<0.005\) & <0.005 & \(<0.05\) & \(<0.05\) & 0.3 \\
\hline Manganese & \(<0.010\) & <0.010 & \(<0.018\) & \(<0.026\) & \(<0.005\) & \(<0.00\) & \(<0.005\) & 0.05 \\
\hline Mercury & \(<0.0010\) & \(<0.010\) & \(<0.0010\) & \(<0.0010\) & \(<0.023\) & \(<0.010\) & \(<0.010\) & 0.05 \\
\hline \(\frac{\text { Selenium }}{\text { Silver }}\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & \(<0.0010\) & <0.0010 & \(<0.0010\) & 0.002 \\
\hline Silver & \(<0.010\) & <0.010 & <0.010 & \(<0.010\) & \(<0.005\) & \(<0.005\) & \(<0.005\) & 0.01 \\
\hline Sodium & 7. & 6. & 9. & 8 & - 5 & \(<0.010\) & <0.010 & 0.05 \\
\hline Conduess & 61 & 66 & 52 & 51 & 43 & 10 & 12 & \\
\hline Conductivity & 180 & 270 & 120 & 130 & 120 & 61 & 75 & \\
\hline 'Inrbidity & 0.2 & 0.6 & . 4 & <0.3 & 120 & 190 & 210 & 700 \\
\hline Folor & \(<5.0\) & \(<5.0\) & <5.0 & \(<5.0\) & \(\checkmark 5\) & . 4 & 0.3 & 1.0 \\
\hline Fiuoride & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<0.2\) & \(<5.0\) & \(<5.0\) & \(<5\). & 15 \\
\hline Nitrate
chloride & 1.2 & \(<1.9\) & 1.8 & \(<0.2\) & \(\bigcirc\) & \(<0.2\) & <0.2 & \\
\hline rhloride & \(<10\) & \(<10\) & <10 & \(<10{ }^{\circ}\) & 21 & \(<0\). & 1.3 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline IIEM & WELLL 1
\[
2 / 14 / 92
\] & WELL 2
\[
2 / 14 / 92
\] & WEILL 4
\[
2 / 14 / 92
\] & WELL. 5
\[
2 / 14 / 92
\] & WETL 6
\[
2 / 14 / 92
\] & WELL 7
\[
2 / 14 / 92
\] & \[
\begin{aligned}
& \text { WELL } 8 \\
& 7 / 12 / 91
\end{aligned}
\] & ** MCL \\
\hline PH & 7.0 & 7.3 & 7.93 & & & & & \\
\hline Arsenic & \(<0.010\) & \(<0.01\) & <0.01 & 8.4 & 8.4 & 7.7 & 6.8 & \\
\hline Barium & \(<0.1\) & \(<0.1\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.01\) & \(<0.010\) & . 05 \\
\hline Cadmiun & <0.002 & \(<0.002\) & <0.1 002 . & \(<0.1\) & <0.1 & \(<0.1\) & \(<0.25\) & 1.00 \\
\hline Chrogium & \(<0.05\) & \(<0.05\) & \(<0.002\) & \(<0.002\) & <0.002 & \(<0.002\) & \(<0.002\) & 0.01 \\
\hline Iron & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.05\) & <0.05 & \(<0.05\) & \(<0.010\) & 0.05 \\
\hline Lasd & \(<0.002\) & \(<0.002\) & \(<0.0025\) & \(<0.05\) & 0.37 & \(<0.05\) & \(<0.05\) & 0.3 \\
\hline Manganese & \(<0.01\) & \(<0.01\) & 0.043 & <0.002 & <0.002 & \(<0.002\) & <0.005 & 0.05 \\
\hline Marcury & \(<0.0002\) & \(<0.0002\) & \(<0.040\) & \(<0.0002\) & 0.038
\(<0.0002\) & <0.01 & <0.010 & 0.05 \\
\hline Solentum & <0.005 & \(<0.005\) & \(<0.005\) & \(<0.0002\) & \(<0.0002\) & \(<0.0002\) & \(<0.0010\) & 0.002 \\
\hline Silver & <0.01 & <0.01 & \(<0.01\) & \(<0.01\) & \(<0.005\) & \(<0.005\) & <0.005 & 0.01 \\
\hline Sodiua & 9.5 & 6.1 & 8.7 & 8. 0.4 & <0.01 & <0.01 & <0.010 & 0.05 \\
\hline Harduess & 85. & 75 & 62 & 62 & 4.8 & 10 & 12 & \\
\hline Couductivity & 180. & 150 & 140 & 140 & \(\underline{56}\) & 79 & 75 & \\
\hline Turbidity
color & 0.46 & 0.42 & . 33 & 0.32 & \(\underline{120}\) & 170 & 210 & 700 \\
\hline \(\frac{\text { Color }}{\text { rluoride }}\) & \(<5.0\) & \(<5.0\) & \(<5.0\) & \(<5.0\) & < 2.90 & . 32 & 0.3 & 1.0 \\
\hline Nituoride & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.5\) & \(<0.0\) & \(<5.0\) & \(<5\). & 15 \\
\hline Nitrata & 1.0 & <1. B & \(<1.0\) & \(<1.0\) & \(<0.5\) & \(<0.5\) & <0.2 & 2 \\
\hline thlorida & \(<20\). & \(<20\) & \(<20\) & \(<20\) & \(<1.0\) & <1.0 & 1.3 & 10 \\
\hline Sulfata & 10. & <10. & \(<10\). & \(<10\) & \(<20\) & \(<20\) & \(<10\) & 250 \\
\hline Cuppax & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<0.02\) & \(<10\) & 11 & & 250 \\
\hline Linc & <0.05 & \(<0.05\) & \(<0.05\) & \(<0.05\) & \(<0.02\) & <0.02 & & 1.0 \\
\hline Aluminum & \(<5,0\) & \(<5.0\) & <5.0 & \(<5.0\) & \(<0.05\) & \(<0.05\) & & 5.0 \\
\hline talcium & 19. & 18. & 18 & 18 & <5.0 & \(<5.0\) & & \\
\hline & & & 18 & 18 & 16 & 20. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ITEM & WELL 1 & WELT 2 & WELL 4 & WELL 5 & WELL 6 \% & WELL 7 & WELL 8 & WELL 9 & MCL \\
\hline & 3-2-93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2-93 & 3-2-93 & \\
\hline Q, mos & & & & & & & & & \\
\hline Arsenic & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & 0.05 \\
\hline Bariumi & < 0.1 & < 0.1 & < 0.1 & < 0.1 & < 0.1 & < 0.1 & < 0.1 & < 0.1 & 1 \\
\hline Cadmium & \(<0.002\) & < 0.002 & < 0.002 & < 0.002 & < 0.002 & < 0.002 & \(<0.002\) & < 0.002 & . 0.01 \\
\hline Chromintit & < 0.05 & < 0.05 & < 0.05 & < 0.05 & \(<0.05\) & \(<0.05\) & \(<0.05\) & < 0.05 & 0.05 \\
\hline & < 0.02 & < 0.02 & < 0.02 & < 0.02 & < 0.02 & < 0.02 & < 0.02 & < 0.02 & 1.3 \\
\hline & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.17 & 0.3 \\
\hline Lead \% Shem & < 0.002 & \(<0.002\) & < 0.002 & < 0.002 & < 0.002 & < 0.002 & \(<0.002\) & < 0.002 & 0.05 \\
\hline Manganese & < 0.01 & < 0.01 & \(<0.043\) & < 0.041 & \(\leq 0.092\) & < 0.01 & < 0.01 & < 0.01 & 0.05 \\
\hline & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & < 0.0002 & 0.002 \\
\hline Seleniumist \({ }^{\text {a }}\), & < 0.005 & \(<0.005\) & < 0.005 & < 0.005 & < 0.005 & < 0.005 & < 0.005 & < 0.005 & 0.01 \\
\hline & < 0.01 & < 0.01 & < 0.01 & < 0.01 & < 0.01 & \(<0.01\) & < 0.01 & < 0.01 & 0.05 \\
\hline & 9.1 & 9.3 & 9.0 & 7.7 & 8.4 & 9.5 & 10. & 8.5 & \\
\hline & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & 5 \\
\hline Hardness > - \% & 78. & 80 & 65 & 65 & 93 & 79 & 75 & 68 & \\
\hline Conductivity x , & 190 & 150 & 160 & 150 & 210 & 190 & 190 & 160 & 700 \\
\hline Tubidity, w ,, , & 0.10 & 0.49 & 0.17 & 0.15 & 0.1 & 0.1 & 0.14 & 0.43 & 1 \\
\hline & 5. & 5. & 5. & 5. & 5. & 5. & 5. & 5. & 15 \\
\hline Chloride \({ }^{\text {a }}\), & <20 & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & \(<20\) & < 20 & 250 \\
\hline & \(<0.5\) & \(\leq 0.5\) & < 0.5 & < 0.5 & < 0.5 & < 0.5 & < 0.5 & < 0.5 & 2 \\
\hline Nitrale, & < 1.0 & \(<1.0\) & < 1.0 & \(<1.0\) & < 1.0 & < 1.0 & < 1.1 & < 1.0 & 10 \\
\hline Sullate & \(<10\) & \(<10\) & < 10 & < 13 & < 10 & < 10 & < 10 & < 10 & 250 \\
\hline
\end{tabular}

\footnotetext{
LEGEND
\(<\) Less Than Deleclable Limits
- Maximmın Conlaminant Level
}

\section*{Ground Water Contamination Susceptibility Assessment Survey Form Version 2.1}

\section*{IMPORTANT! Please complete one form for each ground water source (well, wellfield, spring) used in your water system. Photocopy as necessary.}

\section*{PART I: System Information}

Well owner/manager : SAMMAMISH PLATEAL WATEE T SEWEE DIST.
Water system name: SAMMAMISH PLATEAU W/NTER T SEWER DIST
County: \(\qquad\)
Water system number: 409009
Source number: 307
Well depth: \(\qquad\) (it.) (From WFI form)
Source name: \(\square\)
WA well identification tag number:_________ _-_ _-_
\(\qquad\) well not tagged
Number of connections: \(\frac{9000}{24 N}\)
Township: \(\quad 21\)
Section: \(\quad 2\)
Population served: \(Z 6, \operatorname{ctO}\)
Range: \(\qquad\)
1/4 1/4 Section: SE/SE

Latitude/longitude (if available): \(\qquad\) 1
How was lat./long. determined?
\(\qquad\) other:
global positioning device \(\qquad\) survey \(\qquad\) topographic map
* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V.

PART II: Well Construction and Source Information
1) Date well originally constructed:
 month/day/year
last reconstruction: __ _ _ ___ month/day/year
. ___ information unavailable
\[
\begin{gathered}
\text { Survey Form Yer. } 2 . i \\
\text { page : }
\end{gathered}
\]
2) Well driller: \(\qquad\) P. Q. Z ot 100

GEALAN Win.
_ well driller unknown
3) Type of well:

_ Other: _ spring (s) _ lateral collector (Taney) __driven __ jetted __ other: ___

Additional comments: \(\qquad\)
4) Well report available? X YES (attach copy to form) _ NO

If no well \(\log\) is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: \(\qquad\) (gailons/min)

Source of information: \(\qquad\)
If not documented, how was pumping rate determined? \(\qquad\)
_ Pumping rate unknown
6) Is this source treated?
\[
Y E S-w_{i l l} \text { be }
\]

If so, what type of treatment:
__ disinfection _ filtration __ carbon tilter __ air stripper X uther
Purpose of treatment (describe materials to be removed or controlled by treatment):

Residual level: \(\qquad\) (At the point closest to the source.)
```

Survey Form Ver. 2.1
page 2

```

\section*{PART III: Hydrogeologic Information}
1) Depth to top of open interval: \{check one\}

__ information unavailable ('<'means less than; '> 'means greater than)
2) Depth to ground water (static water level):
\(X \leq 20 \mathrm{ft} \quad\) 20-50 ft \(\quad\) 50-100 \(\mathrm{ft} \quad>100 \mathrm{tt}\)
_ flowing wellspring (artesian)
How was water level determined?
\(\chi_{\text {well } \log }\) \(\qquad\) other: \(\qquad\)
_ depth to ground water unknown
3) If source is a towing well or spring, what is the continuing pressure:
\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feet above wellhead
4) It source is a flowing well or spring, is there a surface impoundment, reservoir. or catchment associated, with this source: _ YES \(\qquad\) NO
5) Wellhead elevation (height above mean sea level): 17 (it)

How was elevation determined? __ topographic map \(\bigvee\) Drilling/Well Lug __altimeter
\(\qquad\) other: \(\qquad\)
\(\qquad\) information unavailable
6) Contining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package tor example.)

YES
evidence of a confining layer in well \(\log\)
no evidence of a continuing layer in well log
If there is evidence of a contining/ayer. is the depth to ground water more than 20 feet above the top of the open interval?information unavailable

> Survey Form Yer. 2.1 sage :
7) Sanitary setback:
\(\qquad\) 120-200 ft \(\qquad\) \(>200 \pi\)
* if less than 100 ft describe the site conditions:
8) Wellhead construction:
wellhead enclosed in a wellhouse
\(\mathcal{Y}\) controlled access (describe): \(\angle A T E D / L C C K E D\)
\(\qquad\)
- other uses tor wellhouse (describe): \(\qquad\)
- no wellhead control
9) Surface seal:
— 18 ft
_ < 18 ft (no Department of Ecology approval) \(\quad\) ('<'means less than)
\(\begin{array}{ll}\ldots<18 \mathrm{ft}\{\mathrm{A} \rho \mathrm{proved} \text { by Ecology, include documentation }) & (\prime<\prime \text { means less than i } \\ X>18 \mathrm{tt} & (\prime>' \text { means greater than })\end{array}\)
__ depth of seal unknown
__ no surface seal
10) Annual rainfall (inches per year):
\(-<10 \mathrm{in} / \mathrm{yr}\)
\(-10-25 \mathrm{in} / \mathrm{yr}\)

Survey Form Var, 2.1 page +

\section*{PART IV: Mapping Your Ground Water Resource}
\(15,020,000\)
1) Annual volume of water pumped: \(\qquad\) (gallons)

How was this determined?

Xmeter
__estimated: \(\qquad\) pumping rate \(\qquad\) _)
\(\qquad\)
\(\qquad\) other: \(\qquad\)
2) "Calculated Fixed Radius" estimate of ground water movement: (see Instruction Packer)

6 month ground water travel time :
I year ground water travel time :
5 year ground water travel time:
10 year ground water travel time:
Information available on length of screened/open interval?

_ NO
Length of screened/open interval: \(\qquad\) 54

The Sammamish Plateau (i) Water Sewer District participated in the Lower issaquah Valley Wellhead Protection Plan. The Figures Firlyr, Syr, \(+10 y r_{1}\). Capture
Zones are attached, as well (ti) Ion ane attend, as well as figures regarding potestia contamination sow red. \(A\) complete copy of the report is iso included District while. \(7+8\) are considered combined
3) Is there a rivers lake. pond. stream, or other obvious surface water body within the 6 month time of travel boundary? YES NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon. or holding pound located within the 6 month time of travel boundary? \(\qquad\) YES \(\qquad\) NO (mark and identity on map).

Comments: \(\qquad\)
\(\qquad\)
\(\square\)
\(\qquad\)

\section*{PART V: Assessment of Water Quality}
l) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:

Note: We used the
leer curtwe \(\rightarrow 6\) month 1 year 5 year unknown
likely pesticide application stormwater injection wails other injection wells abandoned ground water weil landfills, dumps, disposal areas known hazardous materials clean-up site water systems) with known quality problems population density > I house/acre residences commonly have septic tanks Wastewater treatment lagoons sites used for land application of waste

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:
 Chenuical Handles
lube/ Cir Chan annie Fricilitics
Char Repair Stations
DRY CleAnERS
2) Sure specific water quality records:

Please indicate the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment, MCLS are listed in assistance package.)
A. Nitrate: (Nitrate MCL \(=10 \mathrm{mg} / \mathrm{A}\))

YES NO
Results greater than MCL
\(<2 \mathrm{mg} / \mathrm{liter}\) nitrate
2-5 mg/liter nitrate
> \(5 \mathrm{mg} /\) liter nitrate
__ Nitrate sampling records unavailable
3. VOC: (VOC detection level \(0.5 \mathrm{ug} / \mathrm{l}\) or \(0.0005 \mathrm{mg} / \mathrm{l}\).)

Results greater than MCL or SAL
VOC detected at least once
VOLs never detected
_ VOC sampling records unavailable
C. EDB/DBCP:
(\(E D B \mathrm{MCL}=0.05 \mathrm{ug} / \mathrm{l}\) or \(0.00005 \mathrm{mg} / \mathrm{l}\). DBCP \(\mathrm{MCL}=0.2 \mathrm{ug} / \mathrm{l}\) or \(0.0002 \mathrm{mg} / \mathrm{l}\)) EDB/DBCP detected above MCL at least once
EDB/DBCP never detected
YES NO

\section*{EDB/DBCP detected below MCL at least once}

Х
but not yer completed
EDB/DBCP tests not required

\section*{D. Other SOCS (Pesticides):}

Other SOC detected (pesticides and other synthetic organic chemicals)

YES NO
- -
__ Other SOC tests performed but none detected
(list test methods in comments
\(\geq\) Other SOC tests not performed

It any SOC in addition to EDB/DBCP were detected. please identify and date. If ocher SOC tests were performed. but no SOC detected, list test methods here: \(\qquad\)

\section*{E. Bacterial contamination:}

\section*{YES}

Any bacterial detections) in the past 3 years in samples taken from the source (not distribution sampling records).

Has source (in past 3 years) had a bacteriological contamination problem round in distribution samples that was attributed to the source.
__ Source sampling records for bacteria unavailable
\(\qquad\)

Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones tor that source. As a system develops is Wellhead Protection Plan tor theses sources. a more detailed delineation method should be considered.
1) is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)
_YES
_ NO
Describe with references to map produced in Part IV:

2) Aquifer Material:
A) Does the drilling log, well \(\log\) or other geologic/engineering reports identify that the well is located in an area where the underground conditions are identified as fractured cock and/or basalt terrain?
_YES
B) Does the drilling log, well \(\log\) or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and grave!?

3) Is the source located in an aquifer with a high horizontal flow rate? (These can include sources located on thud plains or large rivers, artesian wells with high water pressure, indoor shallow towing wells and springs.)
_ YES
\(<\) NO
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs?
a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
\(<6\) month travel time
\[
\begin{aligned}
& \text { YES NO unknown } \\
& \leq-- \\
& \leq-=-
\end{aligned}
\]
b) Presence of ground water recharge wells (dry wells or heavy irrigation within...
< 1 year travel time

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map
See Lower issagaah Valley Wellhead Protection Plan

\section*{Ostact Wells I+8 are einsrdered together} The Oistrat is currently applying for a well field designation.
```

Survey Form Var. 2.1
page

```

\section*{Suggestions and Comments}

Did you attend one of the susceptibility workshops?
_ YES _ NO

Did you find it useful? YES \(\qquad\)

Did you seek outside assistance to complete the assessment?
YES NO

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\footnotetext{
Survey Form Ver. 2.1
page 10
}

\title{
Ground Water Contamination Susceptibility Assessment Survey Form
}

Version 2.2
IMPORTANT!Please complete one form for each ground water source (well, wellfield, spring) used in your water system.

Photocopy as necessary.

\section*{PART I: System Information}

Well owner/manager : __ Sammamish Plateau Water \& Sewer District
Water system name : \(\qquad\)
County:_King
Water system number: \(\qquad\) Source number: \(\underline{\underline{S 13}}\)
Well depth: \(\qquad\) (ft.) (From WFI form)

Source name: \(\qquad\)
WA well identification tag number: \(\underline{\text { AAD }} \underline{\underline{365}}\)

Number of connections: \(\qquad\) 14358

Population served: \(\quad 48,036\)
Township: 24 N

Range: \(\qquad\)
1/4 1/4 Section: SW1/4 of the NW1/4
Section: \(\qquad\)

Latitude/longitude (if available): \(\qquad\) \(47.53978 \quad\) _- 122.03307 How was lat./long. determined?
global positioning device \(\qquad\) survey ___ topographic map
x _other: Online King County imap - http://www.metrokc.gov/gis/mapportal/iMAP_main.htm
* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V.

\section*{PART II: Well Construction and Source Information}
1) Date well originally constructed: \(\underline{07} / \underline{15} / \underline{91}\) month/day/year last reconstruction: _ / _ / _ month/day/year
\(\qquad\) information unavailable
2) Well driller: Hokkaido Well Drillng and Development Corporation

\section*{24511 1044 \({ }^{\text {th }}\) Avenue Court East}

Graham, WA 98338
\(\qquad\) well driller unknown
3) Type of well:
x Drilled: _ rotary _ bored \(\underline{X}\) cable (percussion) _ Dug
_ Other: _ spring(s) _ lateral collector (Ranney)
_ driven _ jetted _ other:
Additional comments: \(\qquad\)
4) Well report available? \(x\) YES (attach copy to form) _ NO

If no well \(\log\) is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: \(\qquad\) (gallons/min) Drilling and Completion
Reports for Test Wells VT-7 and VT-8 and Production Well 9 (Carr/Associates, 1992)
If not documented, how was pumping rate determined? \(\qquad\)
_ Pumping rate unknown
6) Is this source treated?

If so, what type of treatment:
\(\underline{\mathrm{x}}\) disinfection __ filtration __ carbon filter __ air stripper \(\underline{X}\) other
Purpose of treatment (describe materials to be removed or controlled by treatment):
Water is chlorinated, Fluoridated, and treated with NaOH (Caustic Soda) to increase natural water pH for corrosion control
7) If source is chlorinated, is a chlorine residual maintained: \(\underline{X}\) YES _ NO

Residual level: minimum 0.3 ppm free after the filters (At the point closest to the source.)

\section*{PART III: Hydrogeologic Information}
1) Depth to top of open interval: [check one]
\(\ldots<20 \mathrm{ft} \quad \underbrace{20-50 \mathrm{ft}} \ldots 50-100 \mathrm{ft}\) X \(100-200 \mathrm{ft} \ldots>200 \mathrm{ft}\)
_ information unavailable ('<' means less than; '>' means greater than)
2) Depth to ground water (static water level):
\(\underline{X}<20 \mathrm{ft} \quad _^{20-50 \mathrm{ft} \quad \underbrace{50-100} \mathrm{ft} \quad \underline{X}>100 \mathrm{ft}}\)
_ flowing well/spring (artesian)
How was water level determined?
_ well \(\log \quad \underline{X}\) other: __ Measured to within 0.01 ft with electronic sounding device
_ depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure:
\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir, or catchment associated with this source: _ YES _ NO
5) Wellhead elevation (height above mean sea level): \(\quad \underline{76.99}(\mathrm{ft})\)

How was elevation determined? _ topographic map _ Drilling/Well Log _ altimeter X other: 1991 Lower Issaquah Valley Concept Engineering Survey
__ information unavailable
6) Confining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)

X evidence of a confining layer in well log
(Note: confining layers are thin and believed to pinch out to the east)
_ no evidence of a confining layer in well log
If there is evidence of a confining layer, is the depth to ground water more than 20 feet above the bottom of the lowest confining layer?

X YES \(\qquad\) NO
__ information unavailable
7) Sanitary setback:
\(\ldots<100 \mathrm{ft}^{*}\) X 100-120 ft_120-200 ft _ \(>200 \mathrm{ft}\)
* if less than 100 ft describe the site conditions:
8) Wellhead construction:

X wellhead enclosed in a wellhouse
X controlled access (describe): The well is locked in a wellhouse that is monitored via telemetered security systems
_ other uses for wellhouse (describe): \(\qquad\)
\(\qquad\)
_ no wellhead control
9) Surface seal:
_ 18 ft
_ < 18 ft (no Department of Ecology approval) ('<' means less than)
\(\ldots<18 \mathrm{ft}\) (Approved by Ecology, include documentation)('<' means less than)
\(\underline{x}>18 \mathrm{ft} \quad\) ('>' means greater than)
__ depth of seal unknown
_ no surface seal
10) Annual rainfall (inches per year):
\[
\ldots<10 \mathrm{in} / \mathrm{yr} \quad _^{10-25 \mathrm{in} / \mathrm{yr} \underline{X}>25 \mathrm{in} / \mathrm{yr}}
\]

\section*{PART IV: Mapping Your Ground Water Resource}
1) Annual volume of water pumped: \(\underline{261,984,204}\) (gallons)

How was this determined?
\(\qquad\) meter
_ estimated: _ pumping rate (\(\qquad\)
_ _ pump capacity \(\qquad\)
X other \(\qquad\) Water Rights shared with SPWSD Wells 7 \& 8. Annual estimate based on \(50 \%\) of the additional water rights shared wells \(7 \& 8\) are pumped from Well 9
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time :
2,754

1 year ground water travel time :
3,895
5 year ground water travel time:
8,709
10 year ground water travel time:
12,317
Information available on length of screened/open interval?

Length of screened/open interval: \(\qquad\) (ft)
3) Is there a river, lake, pond, stream, or other obvious surface water body within the 6 month time of travel boundary? X Y YES _ NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon, or holding pond located within the 6 month time of travel boundary? X YES _ NO (mark and identify on map).

Comments: A large stormwater infiltration gallery for Issaquah Highlands was recently installed and activated within 600 ft upgradient of District Well 9. The District has challenged a recent NPDES permit submitted by the Issaquah Highlands Developer for this facility. The District is concerned of potential groundwater contamination from this nearby stormwater injection and hopes to work with the City of Issaquah and Port Blakely (Developer) in a cooperative manner to resolve these concerns.

\section*{PART V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:

6 month 1 year 5 year unknown

sites used for land application of waste \(\qquad\)
\(\square\)
\(\qquad\)
Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:

The Lower Issaquah Valley Wellhead Protection Plan Report was prepared in November 1993 for the City of Issasquah and the Sammamish Plateau Water \& Sewer District. Well 9 was not included in this report, but areas identified in the attached contaminant inventory from this report (Section 7) would be included for Well 9. SPWSD will develop a contaminant source inventory that will include Well 9's modeled capture areas and update information found in the 1993 inventory.

\section*{2) Source specific water quality records:}

Please indicate the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment, MCLs are listed in assistance package.)
\begin{tabular}{|c|c|c|}
\hline A. Nitrate: (Nitrate MCL \(=10 \mathrm{mg} / \mathrm{l}\)) & YES & \(\underline{\mathrm{NO}}\) \\
\hline Results greater than MCL & & X \\
\hline < 2 mg /liter nitrate. & - & \\
\hline \(2-5 \mathrm{mg} / \mathrm{liter}\) nitrate. & & \\
\hline > \(5 \mathrm{mg} / \mathrm{liter}\) nitrate & & \\
\hline Nitrate sampling records unavailable & & \\
\hline B. VOCs: (VOC detection level \(0.5 \mathrm{ug} / 1\) or \(0.0005 \mathrm{mg} / \mathrm{l}\).) & YES & \(\underline{\mathrm{NO}}\) \\
\hline Results greater than MCL or SAL & & X \\
\hline VOCs detected at least once. & & X \\
\hline VOCs never detected & X & \\
\hline VOC sampling records unavailable & & \\
\hline C. EDB/DBCP: & YES & \(\underline{\mathrm{NO}}\) \\
\hline (EDB MCL \(=0.05 \mathrm{ug} / 1\) or \(0.00005 \mathrm{mg} / 1 . \mathrm{DBCP}\) MCL \(=0.2 \mathrm{ug} / \mathrm{l}\) & & \\
\hline EDB/DBCP detected below MCL at least once & & \\
\hline EDB/DBCP detected above MCL at least once & & \\
\hline EDB/DBCP never detected & & \\
\hline EDB/DBCP tests required but not yet completed & & \\
\hline EDB/DBCP tests not required & _X & \\
\hline D. Other SOCs (Pesticides): & YES & NO \\
\hline Other SOCs detected & & _X \\
\hline (pesticides and other synthetic organic chemicals) & & \\
\hline Other SOC tests performed but none detected (list test methods in comments) & - & \\
\hline Other SOC tests not performed & - - & \\
\hline
\end{tabular}

If any SOCs in addition to EDB/DBCP were detected, please identify and date. If other SOC tests were performed, but no SOCs detected, list test methods here: \(\qquad\)

Any bacterial detection(s) in the past \(\underline{3}\) years in samples taken from the source (not distribution sampling records) \(\qquad\)
Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source. \(\qquad\)
\(\qquad\)

Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.
1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)
\[
\underline{X} \text { YES } \quad \text { NO }
\]

Describe with references to map produced in Part IV:
5 and 10 yr boundaries extend beyond East Fork and Main Stem of Issaquah Creek and into areas west and Northeast of the Lower Issaquah Valley that are identified as bedrock boundaries.
2) Aquifer Material:
A) Does the drilling log, well log or other geologic/engineering reports identify that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?
\[
_ \text {YES } \quad \underline{X} \text { NO }
\]
B) Does the drilling log, well log or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?
\[
\underline{X} \text { YES } \quad _ \text {NO }
\]
3) Is the source located in an aquifer with a high horizontal flow rate? (These can include sources located on flood plains of large rivers, artesian wells with high water pressure, and/or shallow flowing wells and springs.)
\[
\underline{X} \text { YES } \quad \text { _ NO }
\]
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs? YES
a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
\begin{tabular}{llll}
& YES NO & unknown \\
\(<6\) month travel time & \(-X_{-}\) & - \\
6 month-1 year travel time & \(-X_{-}-\) & - \\
\(1-5\) year travel time & \(-X_{-}-Z_{-}\) & - \\
\(5-10\) year travel time & \(\mathbf{X}_{-}-\) & -
\end{tabular}
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...
\begin{tabular}{llll}
& YES NO & unknown \\
\(<1\) year travel time & \(-\mathrm{X}--\) & - \\
\(1-5\) year travel time & - & - & - \\
\(5-10\) year travel time & - & - & -
\end{tabular}

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.

The Lower Issaquah Valley Wellhead Protection Plan Report prepared in November, 1993 for the City of Issaquah and the Sammamish Plateau Water \& Sewer District and the Draft Hydrogeology of the Grand Ridge Delta (AGI, October 1997) discussed the, hydrogeology, ground water flow, and recharge area for the LIV area wells.

Based on water levels from wells completed in the LIV Groundwater and hydrogeologic interpretation, recharge is from the east (Issaquah Highlands) and from the south-southeast up the Issaquah Valley and from the East Fork Issaquah Creek Channel/Tradition Plateau.

The hydrogeologic data also indicate the prolific aquifer zones are separated by silty aquitards. These foreset beds deposited by an ancestral delta dip to the west at about 25 degrees (from horizontal). Groundwater monitoring data also show direct water level response in deeper well completion zones located west of the more easterly, shallow zone, recharge. Figure 3 shows this relationship in a cross section (\(A-A^{\prime}\)) that runs East-West through groundwater monitoring wells (VT-7 and VT-8), Production Well 9, and the nearby Issaquah Highlands infiltration gallery.

\section*{Suggestions and Comments}
\begin{tabular}{lll}
Did you attend one of the susceptibility workshops? & \(\ldots\) YES & X NO \\
Did you find it useful? & \(\ldots\) YES & _ NO \\
Did you seek outside assistance to complete the assessment? & \(\underline{X}\) YES & _ NO
\end{tabular}

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.

*

5 and 10 year Calculated Fixed Radius Areas for SPWSD Well 9

\title{
GROUND WATER CONTAMINATION \\ Susceptibility Assessment Survey Form
}

SAMMAMISH PLATEAU WATER \& SEWER DISTRICT 1510 228th Avenue S.E.
Issaquah, Washington
(206) 392-6256

WELL 10

\title{
GROUND WATER CONTAMINATION
}

Susceptibility Assessment Survey Form

\section*{TABLE OF CONTENTS}
- Susceptibility Assessment Survey Form
- Well Site Location Map
- WHPA Capture Zone Map
- Well Log
- Construction and Testing Report

\section*{Ground Water Contamination Susceptibility Assessment Survey Form \\ Version 2.2}

IMPORTANT! Please complete one form for each ground water source (well, wellfield, spring) used in your water system. Photocopy as necessary.

PART 1: System Information
 Water system name: : GHLMANBit Refine Water Sewer District County: \(\qquad\)
Water system number: 4 CCいCく
Source number: \(\qquad\)
Well depth: \(\qquad\) (ft.) (From WFI form)
Source name: (2) \(E d, 10\)

WA well identification tag number: \(\qquad\) - - - -
\(\qquad\) well not tagged

Number of connections: \(1 \mathrm{C}, \mathrm{CD}\)
Township:

Section: \(\qquad\)

Population served: \(2(0,0 \cap 0\)
Range: \(\qquad\)
1/4 1/4 Section: NE 4 SLr 4

Latitude/longitude (if available): \(\qquad\) 1 \(\qquad\)
How was lat. .long. determined?
\(\qquad\) global positioning device \(\qquad\) survey \(\qquad\) topographic map
\(\square\) other: \(\square\)
7
* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V.

\section*{PART II: Well Construction and Source Information}
1) Date well originally constructed: 8121191 month/day/year last reconstruction: __/__ month/day/year
\(\qquad\) information unavailable

> Survey Form Var. 2.2 page 1

2）Well driller： \(\qquad\)
\(\qquad\) well driller unknown
3）Type of well：
【 Drilled：＿rotary＿bored Y＿cable（percussion）＿＿Dug
＿Other：＿spring（s）＿＿lateral collector（Ranney）
＿＿driven＿＿jetted＿＿other：＿＿＿＿
Additional comments： \(\qquad\)

4）Well report available？
\[
X \text { YES (attach copy to form) _ NO }
\]

If no well \(\log\) is available，please attach any other records documenting well construction；e．g．boring logs，＂as built＂sheets，engineering reports，well reconstruction logs．

5）Average pumping rate： \(\qquad\)我を （gallons／min）
Source of information： \(\mathbb{C L A T E R}\) W 1
If not documented，how was pumping rate determined？ \(\qquad\)
＿Pumping rate unknown
6）Is this source treated？ \(\square\) YES \(\square\) NO

If so，what type of treatment：
＿．disinfection＿filtration＿＿carbon filter＿air stripper＿other－
Purpose of treatment（describe materials to be removed or controlled by treatment）：

7）If source is chlorinated，is a chlorine residual maintained： \(\qquad\) YES

Residual level： \(\qquad\) （At the point closest to the source．）

Survey form Der． 2.2
page 2

PART III: Hydrogeologic Information
1) Depth to top of open interval: [check one]
_ (less than) \(20 \mathrm{ft} \quad\) _ \(20-50 \mathrm{ft} \ldots 50-100 \mathrm{ft} \leq 100-200 \mathrm{ft}\) _ (greater than) 200 ft
_ information unavailable
2) Depth to ground water (static water level):
_ (less than) \(20 \mathrm{ft} \ldots 20-50 \mathrm{ft} \leq 50-100 \mathrm{ft} \ldots\) (greater than) 100 ft
__ flowing well/spring (artesian)
How was water level determined?
 well \(\log\) _ other: \(\qquad\)
__ depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure

\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir, or catchment associated with this source: \(\qquad\) YES \(\qquad\) NO
5) Wellhead elevation (height above mean sea level): \(\qquad\) (ft)

How was elevation determined? _ topographic map \(\underset{\sim}{\text { Drilling/Well Log _ altimeter }}\)
\(\qquad\) other: \(\qquad\)
\(\qquad\) information unavailable
6) Confining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)
evidence of a confining layer in well log
__ no evidence of a confining layer in well log
If there is evidence of a confining layer, is the depth to ground water more than 20 feet above the bottom of the lowest confining layer?
\(X\) YES
_ NO
__ information unavailable
Survey Form Yer. 2.2
7) Sanitary setback:(less than) \(100 \mathrm{ft}^{*} \quad\) < \(100-120 \mathrm{ft} \ldots 120-200 \mathrm{ft}\) * if less than 100 ft describe the site conditions:
8) Wellhead construction:
-_ wellhead enclosed in a wellhouse
- controlled access (describe): \(\qquad\)
\(\qquad\)
- other uses for wellhouse (describe): \(\qquad\)
\(\qquad\)
__ no wellhead control
9) Surface seal:
_ 18 t
- (less than) 18 ft (no Department of Ecology approval)
\(\qquad\) (less than) 18 ft (Approved by Ecology, include documentation)(greater than) 18 ft
\(\qquad\) depth of seal unknown
\(\qquad\) no surface seal
10) Annual rainfall (inches per year):
_ (less than) \(10 \mathrm{in} / \mathrm{yr} \quad\) _ \(10-25 \mathrm{in} / \mathrm{yr} \quad\) (greater than) \(25 \mathrm{in} / \mathrm{yr}^{\text {(}}\)

Survey Form Var, 2.2 page 4

\section*{PART IV: Mapping Your Ground Water Resource}
1) Annual volume of water pumped: \(\qquad\) (gallons)

How was this determined?
_ meter

_
other: \(\qquad\)
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time :
\(\frac{310}{A A C}\)
(ft)
(ft)
1 year ground water travel time :

5 year ground water travel time:
1390

\section*{(ft)}
(A) 1 COR THIS WELL, UH FClloung Giesters WeE ARGUERED FCE THE CKDORE ZONES TDEMTELED O:! TH
Length of screened/open interval:
10 year ground water travel time:
Information available on length of screened/open interval?

YES
\(\ldots \mathrm{NO}\)
3) Is there a river, lake, pond, stream, or other obvious surface water body within the 6 month time of travel boundary? - YES \(X\) NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon, or holding pond located within the 6 month time of travel boundary? _ YES

Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Var. 2.2
page 5

\section*{PART V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:
likely pesticide application stormwater injection wells other injection wells \({ }^{\text {AS Ste Vivinuent }}\) abandoned ground water well landfills, dumps, disposal areas known hazardous materials clean-up site water systems) with known quality problems population density (greater than) 1 house/acre residences commonly have septic tanks Wastewater treatment lagoons sites used for land application of waste
\[
6 \text { month } 1 \text { year } 5 \text { year unknown }
\]

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:
* Lisulir (as sitelon un the igitpa capture zen

 Deming Outcry citrate.
\(\qquad\)
\(\qquad\)

Survey Form Der. 2.2
page 6
2) Source specific water quality records:

Please indicate the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment, MOLs are listed in assistance package.)
\begin{tabular}{ll}
A. Nitrate: (Nitrate \(\mathrm{MCL}=10 \mathrm{mg} / \mathrm{l}\)) \\
Results greater than MCL \\
(less than) 2 mg /liter nitrate & YES \\
\(2-5 \mathrm{mg}\) /liter nitrate \\
(greater than) 5 mg /liter nitrate & - \\
Nitrate sampling records unavailable & -
\end{tabular}
B. VOLs: (VOC detection level \(0.5 \mathrm{ug} / \mathrm{h}\) or \(0.0005 \mathrm{mg} /\).) YES

Results greater than MCL or SAL
VOC detected at least once
VOC test performed but never detected
VOC sampling records unavailable
C. EDB/DBCP:

YES
(EDE MCL \(=0.05 \mathrm{ug} /\) or \(0.00005 \mathrm{mg} / \mathrm{DBCP} \mathrm{MCL}=0.2 \mathrm{ug} /\) or \(0.0002 \mathrm{mg} /\).)
EDB/DBCP detected below MCL at least once EDB/DBCP detected above MCL at least once EDB/DBCP never detected EDB/DBCP tests required but not yet completed EDB/DBCP tests not required
D. Other SOCS (pesticides and other synthetic organic chemicals):

YES
Other SOC detected
Other SOC tests performed but none detected *
Other SOC tests not performed
*If any SOC in addition to EDB/DBCP were detected, please identify and date. If other SOC tests were performed, but no SOC detected, list test methods here: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Any bacterial detections) in the past \(\mathbf{3}\) years in samples taken from the source (not distribution sampling records).

Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source.

Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.
1)Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)

Describe with references to map produced in Part IV:

2) Aquifer Material:
A) Does the drilling log, well log or other geologic/engineering reports identify that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?
_ YES

NO
B) Does the drilling log, well log or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?

_ NO
3) Is the source located in an aquifer with a bigh horizontal flow rate? (These can include sources located on flood plains of large rivers, artesian wells with high water pressure, and/or shallow flowing wells and springs.)
_ YES _ NO
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs?
a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
\begin{tabular}{lll}
6 month travel time & YES NO & unknown \\
6 month-1 year travel time & - & - \\
\(1-5\) year travel time & - & - \\
\(5-10\) year travel time & -
\end{tabular}
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...
\begin{tabular}{ll}
1 year travel time & YES NO unknown \\
\(1-5\) year travel time & \(-\quad-\quad-\) \\
\(5-10\) year travel time & - \\
\hline
\end{tabular}

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\author{
Survey Form Ver. 2.2
}
page 9

\section*{Suggestions and Comments}
\begin{tabular}{lll}
Did you attend one of the susceptibility workshops? & _ YES & _ NO \\
Did you find it useful? & \(\ldots\) YES & _ NO \\
Did you seek outside assistance to complete the assessment? & \(\ldots\) YES & \(\ldots\)
\end{tabular}

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will hetp us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survay Form Ver. 2.2
page 10

\section*{SAMMAMISH PLATEAU WATER \& SEWER DISTRICT}

\section*{WELL SITE LOCATION MAP}

\(\qquad\)

（2）LOCANONOFwELA county

（4）TYPEOO WORK：Owners Aumber of wall io more then onel Abandoned \(\square\) ．Naw well 则 Mathod： ，\({ }^{2}{ }^{3}\) Oeepenod
（5）DIMENSIONS：Dismeter of well 12 Driltiod 194：－teet．Depth of comploted wall

Bored
Oriven 品
Jetted
（10）WECLGGORAANDONMENTPROCEOUREQESCRIPTON

\section*{WELL CONSTRUCTOR CERTIFICATION：}

I construeted and／or accept responsibility for conatruction of this wall． and its complianca with il Washington well construction standards．
Materiais used and the information reported aboye are true to my best knowledge and balief．

\section*{NAM}

（6）CONSTRUCTION DETALLS：
 Walded ：．
Uner instalied －Dasm trom \(\qquad\) it．to f． Threaded －Diam．from＿trin．to NoEK SRE of pertorations

\(\qquad\)
 pentoratione from in，by
定 in．
 MAnuftetur rio Nanie
 Gravelpeckedeyold Nowle size ol gravel Grivel ploced trom
 Materim naed in teu Bent／GryI 65－55；Cant 55－0 Did any atruta contain unuasble water？Yea \(\square\) ：No 圂 Type of waten？

Oepth of tirate．
Mothod of aenling struta ofl
（7）PUMP：Manuffeturer＇s Name
（8）WATER LEVELS：Landuntace ilevation Approx 420
 Antestan proneuret＇ \(\qquad\) lbes．por squars ineh Date．
Artecian water is controlied by
（Cup，rawterac）
（9）WELL TESTS：Drawdown is amount wate lovel is lowoged below raticic jeval
 Yield： 508 ：－aisi，min．with 38 n．drawdown ater 24＿irs

hrs．
Airtest gal．\(/\) min．with atom act at Date

\title{
PRODUCTION WELL 10 \\ CONSTRUCTION AND TESTING REPORT
}

SAMMAMISH PLATEAU WATER \& SEWER DISTRICT

\section*{SUMMARY}

Sammamish Plateau Water \& Sewer District Well 10 is capable of producing 550 gpm continuously from a pumping level of 130 feet below ground surface: The well is completed in the lower part of the Plateau Aquifer. Screens are set from 135 to 155 and 173 to 183 feet below ground surface. Water levels of wells completed in the lower part of the Plateau Aquifer (PT-4.2, PT-5, PT-6, and Montessori School Well) reflected this pumping test of Well 10 . Water levels in wells completed in the upper part of the Plateau Aquifer (PT-4.1, PT-1, and Well 2) showed little or no influence from pumping of Well 10. Surface waters in the surrounding area showed no changes in water levels due to the aquifer test.

Water quality samples from Well 10 show all parameters meet Washington State Department of Health water quality standards.

\section*{BACKGROUND}

Property owner:
Hydrogeologist:
Drilling contractor:
Drilling method:
Start date:
Completion date:

Issaquah School District
Carr/Associates, a Division of AGI; Eric Semsak
Armstrong Drilling, Inc.
Cable tool
July 5,1893
August 26, 1993

\section*{PERMITS AND APPLICATIONS}

Copies of the water right application and preliminary permit are included in the Appendix.
\begin{tabular}{ll}
Start card number: & 62368 \\
Water right application number: & G1-21766 \\
Application submitted: & May 4, 1993 \\
Instantaneous: & 500 gpm \\
Annual: & \(200 \mathrm{af} / \mathrm{yr}\) \\
Continuous equivalent: & 124 gpm
\end{tabular}

\section*{DRILLING OBJECTIVE}

The objective of this project was to supply additional ground water resources to augment the District's existing supply for future demands of a growing community.

\section*{Desired yield:}

Target aquifer:
Required quality:

500 gpm
Plateau Aquifer
Potable

\section*{WELL SITE}

The well site, illustrated in Figure 1, is located in the northwest corner of Issaquah School District's new middle school property, approximately 115 feet south of Southeast 32nd Street at about 251st Avenue Southeast. The site lies adjacent to the northwestern portion of the school's parking lot and east of the Bonneville Power transmission lines.
Map location/coordinates: T24N/R6E/NE4SW4, Section 11

County:
King
Top of 12-inch casing elevation: Approximately 420 ft .
Site characteristics: Flat-lying site bordering the Issaquah Middle School's parking lot and the Bonneville Power transmission lines

Ground surface elevation: 418.37

\section*{COMPLETION RECORD}

Well 10 is completed in accordance with WAC Chapter 173-160, effective May 5 , 1988, and meets all requirements for a State of Washington, Group A public supply well.

The well completion record is illustrated in Figure 2 and described in the Water Well Report (Form ECY 050-1-20) in the Appendix.

Total depth drilled:
194 ft.
Completion depth:
193 ft.

Surface Seal
Depth of seal:
65 ft.
Type of seal:
0 to 55 ft ., cement; 55 to 65 ft ., alternating layers of bentonite \& gravel

\section*{Casing Record}

Casing Depth
Diameter
0 to 135 ft .
12-inch
Description
mild-steel casing

\section*{Screen Assembly}

Continuous wrap, wire-wound, welded, type 304 stainless-steel, well screens manufactured by Johnson Division were installed as listed below:
\begin{tabular}{|c|c|c|}
\hline Screen Depth & Dlameter & Description \\
\hline 130 to 135 ft . & 10-inch ID & riser, mild-steel casing with two Figure 'K" Neoprene packers \\
\hline 135 to 155 ft . & 10-Inch ID & type 304 stainless-steel screen (0.030-inch slot) \\
\hline 155 to 173 ft. & 10-inch 10 & blank mild-steel casing \\
\hline 173 to 183 ft . & 10-inch iD & type 304 stainless-steel screen (0.030 -inch slot) \\
\hline 183 to 193 ft & 10-Inch iD & tallpipe, mild-steel casing \\
\hline
\end{tabular}

\section*{HYDROGEOLOGIC LOG}

The hydrogeologic log is illustrated in Figure 3 and described in the Water Well Report in the Appendix.

At Well 10, the upper 70 -foot layer of sediments is glacial till comprised of low permeable, gray-tan silt, sand, and gravel. Between depths of 34 and 36 feet, a thin glacial outwash unit consisting of dry, loose sand and gravel bisects the upper 70 feet of till. A brown, claybound sand unit separates the overlying till from the upper water-bearing zone of the Plateau Aquifer. This zone lies between depths of 75 and 97 feet and consists of brown to gray, coarse sand and gravel with some silt. Beneath this aquifer zone, an impermeable, bluish-gray clay unit was encountered between depths of 97 and 123 feet. This sandy clay separates the upper and lower water-bearing zones of the Plateau Aquifer. At this site, the lower Plateau Aquifer (123 to 193 feet) is bisected by a 9 -foot layer of silt and peat (160 to 169 feet). Above this sit, the lower aquifer appears to be more permeable. Below it, permeabilities tend to decrease with depth.

\section*{SAMMAMISH PLATEAU WATER \& SEWER DISTRICT}

\section*{WELL 10}

\section*{COMPLETION DETARS}

12-NCH CASNG

155
BLANK, 10-NCH CASNG

173
TYPE 304 STANLESS, 10 NCH PMPE SEEE, 030 SLOT SRE
183
TALPMPE, 10-NCH CASNG

\section*{Sound Analytical Services, Inc.}

Carr/Associates
Project: SPWSD Well 10
Lab No. 34339
Page 3 of 4
September 7, 1993
Lab Sample No. 34339-1
Client ID: Well 10

EPA Method 524.2 (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TRIHALOMETHANES (THM)} \\
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Concentration ug/L & PQL & Flags \\
\hline 2941 & Chloroform & ND & 0.5 & \\
\hline 2943 & Bromodichloromethane & ND & 0.5 & \\
\hline 2944 & Dibromochloromethane & ND & 0.5 & \\
\hline 2942 & Bromoform & ND & 0.5 & \\
\hline
\end{tabular}

ND - Not Detected PQL - Practical Quantitation Limit

Volatile Surrogates
\begin{tabular}{|l|c|l|}
\hline Surrogate & \begin{tabular}{l}
Percent \\
Recovery
\end{tabular} & \begin{tabular}{l}
Control \\
Limits
\end{tabular} \\
\hline 4-Bromofluorobenzene & 96 & \(80-120\) \\
1,2 Dichlorobenzene d4 & 93 & \(70-130\) \\
\hline
\end{tabular}

\section*{Sound Analytical Services, Inc.}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Carr/Associates} \\
\hline Project: SPWSD Well 10 & & \\
\hline \multicolumn{3}{|l|}{Lab No. 34339} \\
\hline \multicolumn{3}{|l|}{Page 4 of 4} \\
\hline \multicolumn{3}{|l|}{September 7, 1993} \\
\hline Lab Sample No. 34339-1 & Client ID: & Well 10 \\
\hline INORGANIC PARAMETERS & RESULT & MCL \\
\hline Antimony (GFAA), mg/L & \(<0.006\) & 0.006 \\
\hline Arsenic (GFAA), mg/L & < 0.01 & 0.05 \\
\hline Barium, mg/L & < 0.005 & 2.0 \\
\hline Beryllium, mg/L & < 0.004 & 0.004 \\
\hline Cadmium, mg/L & < 0.005 & 0.005 \\
\hline Chromium, mg/L & 0.01 & 0.1 \\
\hline Copper, mg/L & < 0.025 & 1.0 \\
\hline Iron, mg/L & < 0.1 & 0.3 \\
\hline Lead (GFAA), mg/L & < 0.003 & 0.05 \\
\hline Mangarese, mg/L & \(<0.015\) & 0.05 \\
\hline Mercury (CVAA), mg/L & \(<0.0002\) & 0.002 \\
\hline Nickel, mg/L & \(<0.04\) & 0.1 \\
\hline Selenium (GFAA), mg/L & \(<0.005\) & 0.05 \\
\hline Silver, mg/L & \(<0.01\) & 0.1 \\
\hline Sodium, mg/L & 3.5 & N/A \\
\hline Thallium (GFAA), mg/L & \(<0.002\) & 0.002 \\
\hline Zinc, mg/L & \(<0.2\) & 5.0 \\
\hline Fluoride, mg/L & \(<0.1\) & 2.0 \\
\hline *itrate Nitrogen, mg/L & 0.05 & 10.0 \\
\hline Chloride, mg/L & 1.4 & 250 \\
\hline Sulfate, mg/L & 2.8 & 250 \\
\hline Cyanide, mg/L & \(<0.05\) & 0.2 \\
\hline Turbidity, NTU & \(<0.1\) & 1 \\
\hline Hardness (as \(\mathrm{CaCO}_{3}\)) mg/L & 30 & N/A \\
\hline Conductivity, umhos/cm & 77 & 700 \\
\hline Color, Color Units & \(<5\) & 15.0 \\
\hline Total Dissolved Solids, mg/L & 49 & 500 \\
\hline \multicolumn{3}{|l|}{MCL - Maximum Contaminant Level} \\
\hline \multicolumn{3}{|l|}{N/A - Not Applicable} \\
\hline < Less than practical quant & limit & \\
\hline
\end{tabular}

\footnotetext{

}

\title{
Sound Analytical Services, Inc.
}

SPECLALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS

QUALITY CONTROL REPORT
General Chemistry
\begin{tabular}{ll}
Client: & Carr/Associates \\
LabNo: & \(34339 q c 1\) \\
Matrix: & Water \\
Units: & mg/L \\
Date: & September 7, 1993
\end{tabular}

METHOD BLANKS
\begin{tabular}{|l|c|c|}
\hline Parameter & Result & PQL \\
\hline Fluoride, mg/L & ND & 0.1 \\
\hline Chloride, mg/L & ND & 1.0 \\
\hline Nitrate Nitrogen, mg/L & ND & 0.05 \\
\hline Nitrite Nitrogen, mg/L & ND & 0.05 \\
\hline Sulfate, mg/L & ND & 1.0 \\
\hline Cyanide, mg/L & ND & 0.05 \\
\hline Total Dissolved Solids, mg/L & ND & 2 \\
\hline Turbidity, NTU & ND & 0.1 \\
\hline Hardness (as CaCO 3), mg/L & ND & 2 \\
\hline Conductivity, umhos/cm & ND & 10 \\
\hline Color, color units & ND & 5 \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

\section*{DUPLICATE}
\begin{tabular}{|l|c|c|c|}
\hline Pup No. 34339-1 & \multicolumn{3}{|c|}{} \\
\hline Parameter & Sample(S) & Duplicate(D) & RPD \\
\hline \begin{tabular}{l}
Total Dissolved \\
Solids
\end{tabular} & 49 & & \\
\hline
\end{tabular}

RPD = Relative Percent Difference
\(=[(S-D) /((S+D) / 2)] \times 100\)

\section*{Sound Analytical Services, Inc.}

\section*{QUALITY CONTROL REPORT}

\section*{ORGANIC COMPOUNDS IN DRINKING WATER \\ EPA METHOD 524.2}

Page 1 of 3
Client: Carr/Associates
Lab No: 34339 qc 2
Units: ug/L
Date: September 7, 1993

\section*{METHOD BLANK}

REGULATED COMPOUNDS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Result & PQL & Flags \\
\hline 2976 & Vinyl Chloride & ND & 1.0 & \\
\hline 2977 & 1,1-Dichloroethene & ND & 0.5 & \\
\hline 2981 & 1,1,1-Trichloroethane & ND & 0.5 & \\
\hline 2982 & Carbon Tetrachloride & ND & 0.5 & \\
\hline 2990 & Benzene & ND & 0.5 & \\
\hline 2980 & 1,2-Dichloroethane & ND & 0.5 & \\
\hline 2984 & Trichloroethene & ND & 0.5 & \\
\hline 2969 & 1,4-Dichlorobenzene & ND & 0.5 & \\
\hline 2964 & Methylene Chloride & ND & 0.5 & \\
\hline 2979 & trans-1,2-Dichloroethene & ND & 0.5 & \\
\hline 2380 & Cis-1,2-Dichloroethene & ND & 0.5 & \\
\hline 2983 & 1,2-Dichloropropane & ND & 0.5 & \\
\hline 2991 & Toluene & ND & 0.5 & \\
\hline 2985 & 1,1,2-Trichloroethane & ND & 0.5 & \\
\hline 2987 & Tetrachloroethene & ND & 0.5 & \\
\hline 2989 & Chlorobenzene & ND & 0.5 & \\
\hline 2992 & Ethylbenzene & ND & 0.5 & \\
\hline 2995 & Meta-Xylene, para-Xylene & ND & 0.5 & \\
\hline 2997 & ortho-xylene & ND & 0.5 & \\
\hline 2996 & Styrene & ND & 0.5 & \\
\hline 2968 & 1,2-Dichlorobenzene & ND & 0.5 & \\
\hline 2378 & 1,2,4-Trichlorobenzene & ND & 0.5 & \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

\section*{Sound Analytical Services, Inc.}

\section*{QUALITY CONTROL REPORT}

ORGANIC COMPOUNDS IN DRINKING WATER EPA METHOD 524.2
Page 2 of 3
\begin{tabular}{ll}
Client: & Carr/Associates \\
Lab No: & 34339 qc 2 \\
Units: & ug/L \\
Date: & September 7,1993
\end{tabular}

METHOD BLANK
UNREGULATED COMPOUNDS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Result & PQL & Flags \\
\hline 2212 & Dichlorodifluoromethane & ND & 1.0 & \\
\hline 2210 & Chloromethane & ND & 1.0 & \\
\hline 2214 & Bromomethane & ND & 1.0 & \\
\hline 2218 & Trichlorofluoromethane & ND & 1.0 & \\
\hline 2216 & Chloroethane & ND & 1.0 & \\
\hline 2978 & 1,1-Dichloroethane & ND & 0.5 & \\
\hline 2416 & 2,2-Dichloropropane & ND & 0.5 & \\
\hline 2430 & Bromochloromethane & ND & 0.5 & \\
\hline 2410 & 1,1-Dichloropropene & ND & 0.5 & \\
\hline 2408 & Dibromomethane & ND & 0.5 & \\
\hline 2412 & 1,3-Dichloropropane & ND & 0.5 & \\
\hline 2986 & 1,1,1,2-Tetrachloroethane & ND & 0.5 & \\
\hline 2994 & Isopropylbenzene & ND & 0.5 & \\
\hline 2993 & Bromobenzene & ND & 0.5 & \\
\hline 2988 & 1,1,2,2-Tetrachloroethane & ND & 0.5 & \\
\hline 2414 & 1,2,3-Trichloropropane & ND & 0.5 & \\
\hline 2998 & n-Propylbenzene & ND & 0.5 & \\
\hline 2965 & 2-Chlorotoluene & ND & 0.5 & \\
\hline 2966 & 4-Chlorotoluene & ND & 0.5 & \\
\hline 2424 & 1,3,5-Trimethylbenzene & ND & 0.5 & \\
\hline 2426 & t-Butylbenzene & ND & 0.5 & \\
\hline 2418 & 1,2,4-Trimethylbenzene & ND & 0.5 & \\
\hline 2428 & sec-Butylbenzene & ND & 0.5 & \\
\hline 2967 & 1,3-Dichlorobenzene & ND & 0.5 & \\
\hline 2030 & 4-Isopropyltoluene & ND & 0.5 & \\
\hline 2422 & n-Butylbenzene & ND & 0.5 & \\
\hline 2246 & Hexachlorobutadiene & ND & 0.5 & \\
\hline 2248 & Naphthalene & \(N D\) & 0.5 & \\
\hline 2420 & 1,2,3-Trichlorobenzene & ND & 0.5 & \\
\hline
\end{tabular}
\(\overline{N D}\) - Not Detected PQL - Practical Quantitation Limit

\footnotetext{
 antry seceptable practice. In no twent shall Sound Analyieal Services, inc. or its emplovees be responsible for conseduentian or special damages in any sind or in any amount.
}

\section*{Sound Analytical Services, Inc.}

\section*{QUALITY CONTROL REPORT}
```

ORGANIC COMPOUNDS IN DRINKING WATER EPA METHOD 524.2

```

Page 3 of 3
\begin{tabular}{ll}
Client: & Carr/Associates \\
Lab No: & \(34339 \mathrm{gc2}\) \\
Units: & ug/L \\
Date: & September 7, 1993
\end{tabular}

METHOD BLANK
TRIHALOMETHANES (THM)
\begin{tabular}{l|l|c|c|c}
\hline EPA & \multicolumn{2}{|c|}{ TRIHALOMETHANES(THM) } & & \\
Code No. & Compound Name & Result & PQL & Flags \\
\hline 2941 & Chloroform & ND & 0.5 & \\
2943 & Bromodichloromethane & ND & 0.5 & \\
2944 & Dibromochloromethane & ND & 0.5 & \\
2942 & Bromoform & ND & 0.5 & \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit
\begin{tabular}{|l|l|l|}
\hline Volatile Surrogates & \begin{tabular}{l}
Percent \\
Recovery
\end{tabular} & \begin{tabular}{l}
Control \\
Limits
\end{tabular} \\
\hline 4-Bromofluorobenzene & 97 & \(80-120\) \\
1,2 Dichlorobenzene d4 & 92 & \(70-130\) \\
\hline
\end{tabular}

\section*{Sound Analytical Services, Inc.}

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST. TACOMA. WASHINGTON 98424 - TELEPHONE (206)922-2110 . FAX (206)922-5047

QUALITY CONTROL REPORT

Total Metals

Client: Carr/Associates
Lab No: 34339 qc 3
Units: mg/L
Date: September 7, 1993

METHOD BLANK
\begin{tabular}{|l|c|c|}
\hline Parameter & Result & PQL \\
\hline Antimony & ND & 0.006. \\
\hline Arsenic & ND & 0.01 \\
\hline Barium & ND & 0.005 \\
\hline Beryllium & ND & 0.004 \\
\hline Cadmium & ND & 0.005 \\
\hline Chromium & ND & 0.01 \\
\hline Copper & ND & 0.025 \\
\hline Iron & ND & 0.1 \\
\hline Lead & ND & 0.003 \\
\hline Mercury & ND & 0.0002 \\
\hline Manganese & ND & 0.015 \\
\hline Nickel & ND & 0.04 \\
\hline Selenium & ND & 0.005 \\
\hline Silver & ND & 0.01 \\
\hline Sodium & ND & 0.50 \\
\hline Thallium & ND & 0.002 \\
\hline Zinc & ND & 0.2 \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

\footnotetext{
Th. 'sport is istued solefy for the use of the person or company to whom it is addresed This laberatory acerpts responibility only for the due geriomance of anamss :a accortance with
}

- Lensafrint Plainly

E HEAVY PENCIL

STATE OF WASHiNGTON DEPARTMENT OF HEALTH PUBLIC HEALTH LABORATORIES OFFICE OF RADIATION LABORATORIES 1610 N.E. 150 TH ST., SEATTLE. WA \(98155-7224\)

WATER SAMPLE INFORMATION FOR RADIATION ANALYSES

DATE OF FWAL REPORT
il _y/:

SEND REPORT TO: (PRINT FULL NAME \& ADDRESS)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{c|}{} & DATE COLLECTED & DATE RECEIVED \\
\hline 1 & 0 & 6 \\
\hline
\end{tabular}

LABORATORY REPORT (DO NOT WRITE BELOW THIS LINE)

- MCL is the maximum contaminant Level Allowed

\title{
GROUND WATER CONTAMINATION \\ Susceptibility Assessment Survey Form
}

\section*{SAMAMISH PLATEAU WATER \& SEWER DISTRICT \\ 1510 228 \(^{\text {th }}\) Avenue S.E. \\ Issaquah, Washington 98029}
(425) 392-6256

WELL 11.1

\title{
GROUND WATER CONTAMINATION Susceptibility Assessment Survey Form
}

Well 11.1
TABLE OF CONTENTS
- Susceptibility Assessment Survey Form
- Location Map
- Well 11.1 Wellhead Protection Area
- Aquifer Zone Ill Potentiometric Surface Map
- Well Log
- Construction Details
- Construction and Testing Report
- Water Sample Results

\section*{Ground Water Contamination Susceptibility Assessment Survey Form Version 2.2}

IMPORTANT! Please complete one form for each ground water source (well. wellfield, spring) used in your water system. Photocopy as necessary.

PART I: System Information
Well owner/manager: SAMMAMISH PLATEAO WATER T SEWER
Water system name: SAMMAMisi DLHTEAD WATER ? SENER
County:

Water system number: 409009 Source number: \(\qquad\)
Well depth: \(\qquad\) 491 (it.) (From WFI form)
Source name: \MEU 11.1
WA well identification tag number: A D-3 1
\(\qquad\) well not tagged

Number of connections: 11,080
Township: \(\qquad\)
Section: \(\qquad\)

Population served: \(\qquad\)
33,240
Range: \(\qquad\)
1/4 1/4 Section: NE/NW/

Latitude/longitude (if available): \(\qquad\) 1

How was lat./long. determined?
global positioning device \(\qquad\) survey \(\qquad\) topographic map other: \(\qquad\)
* Please refer to Assistance Packet for details and explanations ur all questions in Parts il through \(V\).

\section*{PART II: Well Construction and Source Information}
1) Date well originally constructed: \(8,9,93\) month/day/year last reconstruction: __ \(/\) _ month/day/year
\(\qquad\) information unavailable

> Survey Form Var. 2.2 page ।
2) Weal Uriller: HoLt Driving 10621 Todd Road EAST
Puvellup. WA. 98372
\(\qquad\) well driller unknown
3) Type of well:

Additional comments: \(\qquad\)
t) Well report available?
 YES (attach copy to form) \(\qquad\) NO

If no well log is available, please attach any other records documenting well construction; e.g. boring logs. "as build" sheets. engineering reports. well reconstruction logs.
5) Average pumping rate:
 (gallons/min)
Source of information:

If nut documented. how was pumping rate determined? \(\qquad\)
__ Pumping rate unknown
6) Is this source treated? \(\qquad\) YES \(X_{\mathrm{No}}\)

If so, what type of treatment:
\(\qquad\) disinfection \(\qquad\) filtration \(\qquad\) carbon filter \(\qquad\) air stripper \(\qquad\) uther

Purpose of treatment (describe materials to be removed or controlled by treatment):
7) If source is chlorinated, is a chlorine residual maintained: \(\qquad\) YES

Residual level: \(\qquad\) (At the point closest to the source.)

Survey Form Der. 2.2

\section*{PART II: Hydrogeologic Information}
1) Depth to top ot open interval: [check one!

2) Depth to ground water (static water level):

How was water level determined?
X well log \(\qquad\) other:
\(\square\) depth to ground water unknown
3) If source is a flowing well ur spring, what is the confining pressure:
\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir, or catchment associated with chis source: \(\qquad\) YES \(\qquad\)
5) Wellhead elevation (height above mean sea level):

How was elevation determined? _ topographic map \begin{tabular}{|}
Drilling/Well Log _ altimeter
\end{tabular}
\(\qquad\) other: \(\qquad\)
\(\qquad\) information unavailable
6) Cuntining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)

X evidence of a confining layer in well log
If there is evidence of a confining layer, is the depth to ground water more than 20 feet above the bottom of the lowest confining layer? \(\qquad\) YES \(\qquad\) NO
\(\qquad\) information unavailable
7) Sanitary setback:
\(\qquad\) (less than) \(100 \mathrm{i}^{*} X 100-120 \mathrm{tt}\) _ \(20-200 \mathrm{it}\) \(\qquad\) (greater than) 200 ft \(=\) if less than 100 it describe the site conditions:
8) Wellhead construction:
\(X\)
wellhead enclosed in a wellhouse
-
controlled access (describe): \(\qquad\)
\(\qquad\)
wher uses for well house (describe): \(\qquad\)
\(\qquad\)
- no wellhead control
9) Surface seal:
- 18 t
- Hess than) 18 H (no Department of Ecology approval)
_ (less than) 18 ft (Approved by Ecology, include documentation)
\(>\)
(greater than) 18 it
\(\qquad\) depth of seal unknown
__ no surface seal
10) Annual rainfall (inches per year):
__ (less than) \(10 \mathrm{in} / \mathrm{yr}\) \(-10-25 \mathrm{in} / \mathrm{yr}\)

X (greater than) \(25 \mathrm{in} / \mathrm{yr}\)

\section*{PART IV: Mapping Your Ground Water Resource}
f) Annual volume of water pumped: \(\qquad\) (gallons)

How was this determined?

meter estimated: \(\qquad\) pumping rate

_ _ pump capacity (\(\qquad\)
\(\qquad\) other: \(\qquad\)
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time :

These are the CF \(\bar{C}\)

I year ground water travel time :
5 year ground water travel time:

(it) per tue sumuile cal's (i) The DISTRLCT HAS ADATIONAC LH EPA

10 year ground water travel time:

(it) IS ATTACHED.
Information available on length of screened/open interval?

Length of screened/open interval:

(ft)
3) Is there a river, lake, pond, stream, or other obvious surface water body within the 6 month time of travel boundary? \(\quad\) YES NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon, or holding pond located within the 6 month time of travel boundary? \(\qquad\) YES \(\qquad\)
Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey form Var. 2.2

\section*{PAKV V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:
likely pesticide application stormwater injection wells other injection wells 相 COMMENTS abandoned ground water well landfills, dumps, disposal areas known hazardous materials clean-up site water systems) with known quality problems population density (greater than) 1 house/acre residences commonly have septic tanks

Wastewater treatment lagoons
sites used tor land application of waste

Mark and identify un map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form.
Please locate and mark any of the following.)
If ocher recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:

Survey Form Der. 2.2
2) Source specific water quality records:

Please indicate the occurrence of any est results since 1986 chat meet the following conditions: (Unless. listed on assessment. MOLs are listed in assistance package.)

*If any SOC in addition to EDB/DBCP were detected. please identify and date. If uther SOC tests were performed, but no SOC detected. list test methods here: \(\qquad\)
\(\qquad\)
\(\qquad\)
THE TEST RESULTS for tests Perform ied on well ll.1 at tile time of construction

\section*{Are EnClosed}

\section*{E. Bacterial cuncaminacion:}

\section*{YES}

Any bacterial detections) in the past 2 years in samples taken from the source (nut distribution sampling records).

Has source (in past 3 years) had a bacteriological contamination problem round in distribution samples that was attributed to the source.

Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.
1) Is there evidence of shvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Dues the largest circle extend over a stream. river, lake. up a steep hillside, and/or over a mountain ur ridge?)

Describe with references to map produced in Part IV:
Thelenicod creek is located within the
one year boundary. Various werlanos are
alSo located in The five ot en year plan.
2) Aquifer Material:
A) Dues the drilling log. well log or other gevlogic/engineering reports identify that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?
\[
\text { _ YES } \quad X N
\]
B) Dues the drilling log. well log or other yeolugic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?

_ NO
i) Is the suurce located in an aquiter with a high horizontal thow rate? (These can include sources located on tlosd plains of large rivers. artesian wells with high water pressure, and/or shallow tlowing wells and springs.)
- YES

4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs?
a) Presence of ground water extraction welts removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
\begin{tabular}{ll}
6 month travel time & YES NO \\
6 month- 1 year travel time & \\
\(1-5\) year travel time &
\end{tabular}
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Suggestions and Comments}
Did you attend one of the susceptibility workshops?
Did you find it useful?
Did you seek outside assistance to complete the assessment?

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complate the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Ver. 2.2
page 10

OWNER: Nam Santrimin Flateed Waber and Serex Distact

i61 CONSTRUCTION DETAILS:

 Surface seat: Yas \(\square\) No Towhel depiht \(\quad 43 \ldots\)
7: Did any alrale coatsin umisable water? Yas \(\square\) No

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Artasian water ls controlied by} \\
\hline \multicolumn{4}{|l|}{WELL TESTS: Drawdowa la amount water lovel in lowewd dalow atatic bevel Wata pmop lect made 7 Yos \(\square\) No \(\square\)
\(\qquad\) Ylate Wyes, by whom?} \\
\hline Ylaid: & & & \\
\hline \(\stackrel{+}{*}\) & \(\cdots\) & - & \\
\hline \(\cdots\) & * & * & \\
\hline
\end{tabular}

\footnotetext{
Recovery dala (dime laken as zero whea purap turned oll) (water loval meatur ad fromwod tog to whiter level)

}

\title{
CATER WELL REPOR
}

STATE OF WASHINGTON
Stert Card No.
UNIQUE WELL I.D. ANDS8I
Waler Rloht Pumft No. \({ }^{\text {G }} \mathrm{Gl}-20073\)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{(10) WELL LOG or AbANDONMENT PROCEDURE DESCRIPTION} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Formation: Daseribe by color, ehafacior, tize of malestal and alfueture, and thow \\
 with al latat one entry for asch change of invormation.
\end{tabular}} \\
\hline Mremil & FROM & 70 \\
\hline fard-san & 0 & 41 \\
\hline Proun Silthard Sans ard Gavels & 41 & 0 \\
\hline Prandsh-Came Silthand sands ami Grvels & 9 & 112 \\
\hline Irpun Silthami stris ani reavels. & 112 & 115 \\
\hline Bran_Silthond_siods ard_ravels_uith & & \\
\hline Othles & 115 & 137 \\
\hline Prow Silthami Sims and Gayels. & 131 & 156 \\
\hline Frch_rais aringuels rith Silt, ha & 156 & 180 \\
\hline Pronnsiodis and Gravels, Heder Pruring & 180 & 201 \\
\hline Armancois and cravels with silt & 211 & 204 \\
\hline Bunh sais and Grapls_vith trace Silt & 284 & 210 \\
\hline Pranisilthamisanianiocavels & 210 & 200 \\
\hline Gay Silty Sims with fer Grapls. & 220 & 241 \\
\hline Siltysma's .anautaruels & 241 & 28 \\
\hline \(\bigcirc\) & & \\
\hline Erandshary Silty Smis-ard_ara & 251 & 291 \\
\hline Silty secis, Grapis ard_otiles. & 291 & 35 \\
\hline Silty Smis, Grayels ard rith fer cothies & 306 & 321 \\
\hline Tansility Smis and Gray uniluter Bearing & 321 & 351 \\
\hline TransiltatSinds and Gavels & 35 & 362 \\
\hline Tha Silthum saris motarapels & 373 & 36 \\
\hline Than sithand Sans and Gravels: xith Oth & 375 & 300 \\
\hline & & \\
\hline & 30 & 410 \\
\hline & 410 & 433 \\
\hline Tan Silty samis anichavels & 433 & 429 \\
\hline Pernish_same_and_ecrvels. & 429 & 434 \\
\hline Tarnslity Sands, Gavels am Cotilen & 434. & 464. \\
\hline Thraish smis and Gravels & 464 & 489. \\
\hline Gry Sanis and gotiles & 409 & 499 \\
\hline \multicolumn{3}{|l|}{Nbe: Final derelopuent arit testiry las mt been tone} \\
\hline \multicolumn{3}{|l|}{as of the conpletion dite.} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

\section*{WELL CONSTRUCTOR CEATIFICATION:}

I constructod endfor accept responalblily for construction of this welt, and lta compliance with al Whahington well construction standerds. Miaterlals used and the informalion reported above are lrue to my beal knowledge and beliel.

NAME Folt Dilling, Inc
PERSOK FIVM OA COAFORAIION)
(MPI OR PRBN)
Address 1062 Toxi Road East, Puyaliuno in Geg72
(Siraed)
Sonemeter

\(\qquad\) Hycrogeologic Logs and Construction Details
Figure 2

PRODUCTION WELL 11.1

\section*{SHALLOW COMPLETION CONSTRUCTION AND TESTING REPORT SAMMAMISH PLATEAU WATER AND SEWER DISTRICT}

\section*{SUMMARY}

On June 1, 1993, Hoit Drilling of Puyallup, Washington finished the first completion of Well 11.1. For this completion, the 16 -inch well was screened above sea level in a brown sand and gravel aquifer between 186 and 210 feet below ground surface (bgs). A 6-hour test at 130 gallons per minute (gpm) caused 14.5 feet of drawdown for a specific capacity of 9 gallons per minute per foot of drawdown (gpm/tt-dd).

The optimum yield for the Well 11.1 shallow completion is calculated at 200 gpm . This is below the District's target aquifer criteria for a production well. As a result, Well 11.1 was driled to and completed in the deeper Aquifer Zone III. Zone lil is a below-sea level aquifer and was also tested at Well 11.1. The results of the Zone IIl test are found in the February 2, 1996 Production Well 11.1 Construction and Testing Report. Details of the shallow completion test are described below:

\section*{SHALLOW COMPLETION DETAILS}

Screened zone:
Screen depth:
Screen elevation:
Initial water level:
Date:
Measuring point stickup:
Ground surface elevation:

Plateau Aquifer Zone Il
186 to 210 ft . (bgs)
169 to 145 ft. (msl)
158.99 ft . (below measuring point)

June 3, 1993
2.17 ft. (above ground surface)
354.67 f. (msl)

\section*{Pumping Test Fesults}

Results of the Well 11.1, Zone Il pumping test are illustrated in Figures 1 and 2. To conduct the test, a 50-horsepower submersible pump was installed in the well to a depth of 182 feet. The results of this 6 -hour pumping test are:

\section*{OPTIMUM YIELD CALCULATION}

Well No.: Production Well 11.1
Owner: Sammamish Plateau Water and Sewer District

OPTIMUM YIELD \(=\) USABLE DRAWDOWN \(\times\) LONG-TERM SPECIFIC CAPACITY
LONG-TERM SPECIFIC CAPACITY \(=45 \mathrm{gpm} / \mathrm{t}\). of drawdown at stabilization or - at maximum pumping term
\(=45 \mathrm{gpm} / \mathrm{t}\).

USABLE DRAWDOWN \(=\) TOTAL AVAILABLE DRAWDOWN - ALLOWANCES TOTAL AVAILABLE DRAWDOWN is:

Max. Pump Setting
Static Water Level
Total Available Drawdown

370 ft. (Below Ground Surface)
\(220 \mathrm{ft}\). (Below Ground Surface) 150 ft .

24 ft .
4 ft.
10 ft (Estimated)
1 ft .
39 ft .

USABLE DRAWDOWN \(=150 \mathrm{ft}-39 \mathrm{ft}=111 \mathrm{ft}\)
For Well 11.1,
OPTIMUM YIELD
\(=\quad 111 \mathrm{ft} \times 4.5 \mathrm{gpm} / \mathrm{ft}\). - drawdown
\(=500 \mathrm{gpm}\) (Estimated)

\section*{WATER} MANAGEMENT LABORATORIES inc.

1515 80th St. E.
Tacoma, WA 98404
531.3121

\section*{VOLATILE ORGANIC CHEMICAL REPORT}

\author{
Results by Analysis by EPA Method 524.2 Measurement of Purgeable Organic Compounds In Water by Capillary Column Gas Chromatography/Mass Spectrometry
}

Sand Report Tos
AGI Technologies
P.O. box 1158

Gig Harbor, WA 98335

\section*{county it ring \\ SYSTEM NAMS : SPWSD well 11.1}

SYSTEM ID NO. : NA Enginearing
DATE COLLECTED: 08/09/95
DATE ANALY2ED : 08/15/95
SOURCE NURBER : SOI
SOURCE TYPE : Well

\section*{B111:}

Sämmamish Plateau Water and Sewer Distr 1510 228th Ave. E.
Issaquah, WA 98027

\title{
AGI Technologies
}

August 30, 1995
Page 3

All results are in milligrams per liter except color which is in color units, pH which is in pH units, specific conductivity which is. in micro-mho per cm and turbidity which is in nephelometric turbidity units. Bicarbonate, carbonate and total hardness are in milligrams per liter as calcium carbonate. Total Coliform results are per 100

Microbiology Lab Number: 08996350
Chemistry Lab Number: 08922147
Sample was analyzed according to Standard Methods for the Examination
of Water and Wastewater, 18th Edition. Chain of Custody record and results of Voc analysis are enclosed. Sincerely,

Diane DuMond
Lab Coordinator

DD:jlp
enclosure
c: \commlag18-10
AGI TechnologiesAugust 30, 1995
Page 2

Auguse 30,1995

\section*{AGI Technologies}

PO Box 1158
Gig Harbor, WA 98335
Attn: Scott Coffey

Dear Sir:

Results of analysis of one ground water engineering sample taken by yourself on 08-09-95 at 10:19 a.m. and received 08-10-95 at 10:00

\section*{Sample Identification: \\ Sammamish Plateau Water and Sewer District, Well, 11.1}

\section*{WATER SAMPLE INFORMATION FOR RADIATION ANALYSES}
sSE HEAVY PENCIL

\title{
 \\ T-
}

\section*{SEND REPORT TO: (PRATT FULL MEME A ADDRESS)}

MCL is the magnum eonammist Level Allowed

LABORATORY SUPERVISOR Name or mimesis)

QUALITY ASSURANCE SUPERVISOR

CHARGE: \(\qquad\) REMARKS:

WATER SUPPLER COPY
DKuVKIVG VVATEK REQUESI FUK ANALYSIS

\[
\begin{aligned}
& \text { Date } / \text { Time } 6 / 3 / 9,4: \geqslant \\
& \text { Date } / \text { Time }
\end{aligned}
\]

\section*{Sound Analytical Services, Inc.}

\section*{DATA QUALIFIER FLAGS}

BI: This analyte was also detected in the associated method blank. The reported sample results have been adjusted for moisture, final exract volume, and/or dilutions performed during extract preparation. The analyte concentration was cvaluated prior to sample preparation adjustments, and was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).

This analyte was also detected in the associated method blank. However, the analyte concentration in the sampic was determined to be significanty higher than the method blank (greater than ten times the concentration reported in the blank).

E:
The concentration of this analyte exceeded the instrument calibration range.

D: The reported result for this analyte is calculated based on a secondary dilution factor.

Contaminant does not appear to be "typical" product. Elution pattern suggests it may be \(\qquad\) .

Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous.
RPD for duplicates outside QC Himits due to analyte concentration near the method practical quantitation limit/detection limit.
X5: Matrix spike was diluted out during aralysis.
X6: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results.
X7: Recovery of matrix spike outside \(Q C\) limits. Matrix interference is indicated by blank spike recovery data.
X7a: RPD value for MS/MSD outside QC imits due to high contaminant levels.

X8: Surrogate was diluted out during analysis.
XS: Surrogate recovery outside QC limits due to matrix composition
X10:
Surrogate recovery outside OC limits due to high contaminant levels.

\title{
Sound Analytical Services, Inc.
}

QUALITY CONTROL REPORT
ORGANIC COMPOUNDS IN DRINKING WATER
EPA METHOD 524.2
\[
\text { Page } 3 \text { of } 3
\]
```

Client: Carr/Associates
Lab No: 32506qc
Units: ug/L
Date: June 17, 1993

```

\section*{METHOD BLANK}

TRIHALOMETHANES (THM)
\begin{tabular}{l|l|c|c|c}
\hline EPA & \multicolumn{3}{|c}{ TRIHALOMETHANES (THM) } & \\
Code No. & Compound Name & Result & PQL & Flags \\
\hline 2941 & Chloroform & ND & 0.5 & \\
2943 & Bromodichloromethane & ND & 0.5 & \\
2944 & Dibromochioromethane & ND & 0.5 & \\
2942 & Bromoform & ND & 0.5 & \\
\hline
\end{tabular}
```

ND - Not Detected
PQL. - Practical Quantitation IImit

```
\begin{tabular}{|l|l|l|}
\hline Volatile Surrogates & \begin{tabular}{l}
Percent \\
Recovery
\end{tabular} & \begin{tabular}{l}
Control \\
Limits
\end{tabular} \\
\hline Surrogate & 98 & \(80-120\) \\
4-Bromofluorobenzene & 88 & \(70-130\). \\
\hline
\end{tabular}

\section*{Sound Analytical Services, Inc.}

\section*{QUALITY CONTROL REPORT}

\section*{ORGANIC COMPOUNDS IN DRINKING WATER EPA METHOD 524.2}

Page 2 of 3
\begin{tabular}{ll}
Client: & Carr/Associates \\
Lab No: & 32506 qC \\
Units: & ug/L \\
Date: & June 17, 1993
\end{tabular}

METHOD BLANK
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ATED COMPOUNDS} \\
\hline EPA Code No. & Compound Name & Result & PQL & Flags \\
\hline 2212 & Dichlorodifluoromethane & ND & 1.0 & \\
\hline 2210 & Chloromethane & ND & 1.0 & \\
\hline 2214 & Bromomethane & ND & 1.0 & \\
\hline 2218 & Trichlorofluoromethane & ND & 1.0 & \\
\hline 2216 & Chloroethane & ND & 1.0 & \\
\hline 2978 & 1,1-Dichloroethane & ND & 0.5 & \\
\hline 2416 & 2,2-Dichloropropane & ND & 0.5 & \\
\hline 2430 & Bromochloromethane & ND & 0.5 & \\
\hline 2410 & 1,1-Dichloropropene & ND & 0.5 & \\
\hline 2408 & Dibromomethane & ND & 0.5 & \\
\hline
\end{tabular}

UNREGULATED COMPOUNDS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Result & PQL & Flags \\
\hline 2412 & 1,3-Dichloropropane & ND & 0.5 & \\
\hline 2986 & 1,1,1,2-Tetrachloroethane & ND & 0.5 & \\
\hline 2994 & Isopropylbenzene & ND & 0.5 & \\
\hline 2993 & Bromobenzene & ND & 0.5 & \\
\hline 2988 & 1,1,2,2-Tetrachloroethane & ND & 0.5 & \\
\hline 2414 & 1,2,3-Trichloropropane. & ND & 0.5 & \\
\hline 2998 & n-Propylbenzene & ND & 0.5 & \\
\hline 2965 & 2-Chlorotoluene & ND & 0.5 & \\
\hline 2966 & 4-Chlorotoluene & ND & 0.5 & \\
\hline 2424 & 1,3,5-Trimethyibenzene & ND & 0.5 & \\
\hline 2426 & t-Butylbenzene & ND & 0.5 & \\
\hline 2418 & 1,2,4-Trimethylbenzene & ND & 0.5 & \\
\hline 2428 & sec-Butylbenzene & ND & 0.5 & \\
\hline 2967 & 1,3-Dichlorobenzene & ND & 0.5 & \\
\hline 2030 & 4-Isopropyltoluene & ND & 0.5 & \\
\hline 2422 & n-Butylbenzene & ND & 0.5 & \\
\hline 2245 & Hexachlorobutadiene & ND & 0.5 & \\
\hline 2248 & Naphthalene & ND & 0.5 & \\
\hline 2420 & 1,2,3-Trichlorobenzene & ND & 0.5 & \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

\footnotetext{

}

\section*{Sound Analytical Services, Inc.}

QUALITY CONTROL REPORT
ORGANIC COMPOUNDS IN DRINKING WATER EPA METHOD 524.2

Page 1 of 3
\begin{tabular}{ll}
Client: & Carr/Associates \\
LabNo: & 32506 gc \\
Units: & ug/L \\
Date: & June 17, 1993
\end{tabular}

\section*{METHOD BLANK}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Result & PQL & Flags \\
\hline 2976 & Vinyl Chloride & ND & 1.0 & \\
\hline 2977 & 1,1-Dichloroethene & ND & 0.5 & \\
\hline 2981 & 1,1,1-Trichloroethane & ND & 0.5 & \\
\hline 2982 & Carbon Tetrachloride & ND & :0.5 & \\
\hline 2990 & Benzene & ND & 0.5 & \\
\hline 2980 & 1,2-Dichloroethane & ND & 0.5 & \\
\hline 2984 & Trichloroethene & ND & 0.5 & \\
\hline 2969 & 1,4-Dichlorobenzene & ND & 0.5 & \\
\hline 2964 & Methylene Chloride & 6.8 & 0.5 & \\
\hline 2979 & trans-1,2-Dichloroethene & ND & 0.5 & \\
\hline 2380 & Cis-1,2-Dichloroethene & ND & 0.5 & \\
\hline 2983 & 1,2-Dichloropropane & ND & 0.5 & \\
\hline 2991 & Toluene & ND & 0.5 & \\
\hline 2985 & 1,1,2-Trichloroethane & : ND & 0.5 & \\
\hline 2987 & Tetrachloroethene & ND & 0.5 & \\
\hline 2989 & Chlorobenzene & ND & 0.5 & \\
\hline 2992 & Ethylbenzene & ND & 0.5 & \\
\hline 2995 & Meta-Xylene, para-Xylene & ND & 0.5 & \\
\hline 2997 & ortho-xylene & ND & 0.5 & \\
\hline 2996 & Styrene & ND & 0.5 & \\
\hline 2968 & 1,2-Dichlorobenzene & ND & 0.5 & \\
\hline 2378 & 1,2,4-Trichlorobenzene & ND & 0.5 & \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

\section*{Sound Analytical Services, Inc.}

Carr/Associates
Lab No. 32506
page 5 of 6
June 17, 1993

Lab Sample No. 32506-2
Client ID: FIELD BLANK

EPA Method 524.2 (continued)

ND - Not Detected
PQL - Practical Quantitation Limit
\begin{tabular}{|l|c|l|}
\hline Volatile Surrogates & \begin{tabular}{l}
Percent \\
Recovery
\end{tabular} & \begin{tabular}{l}
Control \\
Limits
\end{tabular} \\
\hline 4-Bromofluorobenzene & 97 & \(80-120\) \\
1,2 Dichlorobenzene d4 & 93 & \(70-130\) \\
\hline
\end{tabular}

\section*{Sound Analytical Services, Inc.}

Carr/Associates
Lab No. 32506
page 5 of 6
June 17, 1993
Lab Sample No. 32506-2
Client ID: FIELD BLANK
EPA Method 524.2 (continued)
UNREGULATED COMPOUNDS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Concentration ug/L & PQL & Flags \\
\hline 2212 & Dichlorodifluoromethane & ND & 2.0 & \\
\hline 2210 & Chloromethane & ND & 2.0 & \\
\hline 2214 & Bromomethane & ND & 2.0 & \\
\hline 2218 & Trichlorofluoromethane & ND & 2.0 & \\
\hline 2216 & Chloroethane & ND & 2.0 & \\
\hline 2978 & 1,1-Dichloroethane & ND & 1.0 & \\
\hline 2416 & 2,2-Dichloropropane & ND & 1.0 & \\
\hline 2430 & Bromochloromethane & ND & 1.0 & \\
\hline 2410 & 1,1-Dichloropropene & ND & 1.0 & \\
\hline 2408 & Dibromomethane & ND & \(\because 1.0\) & \\
\hline 2412 & 1,3-Dichloropropane & ND & 1.0 & \\
\hline 2986 & 1,1,1,2-Tetrachloroethane & ND & 1.0 & \\
\hline 2994 & Isopropylbenzene & ND & 1.0 & \\
\hline 2993 & Bromobenzene & ND & 1.0 & \\
\hline 2988 & 1,1,2,2-Tetrachloroethane & ND & 1.0 & \\
\hline 2414 & 1,2,3-Trichloropropane & ND & 1.0 & \\
\hline 2998 & n-Propylbenzene & ND & 1.0 & \\
\hline 2965 & 2-Chlorotoluene & ND & 1.0 & \\
\hline 2966 & 4-Chlorotoluene . & . ND & 1.0 & \\
\hline 2424 & 1,3,5-Trimethylbenzene & - ND & 1.0 & \\
\hline 2426 & t-Butylbenzene & ND & 1.0 & \\
\hline 2418 & 1,2,4-Trimethyibenzene & ND & 1.0 & \\
\hline 2428 & sec-Butylbenzene & ND & 1.0 & \\
\hline 2967 & 1,3-Dichlorobenzene & ND & 1.0 & \\
\hline 2030 & 4-Isopropyltoluene & ND & 1.0 & \\
\hline 2422 & n-Butylbenzene & ND & 1.0 & \\
\hline 2246 & Hexachlorobutadiene & ND & 1.0 & \\
\hline 2248 & Naphthalene & ND & 1.0 & \\
\hline 2420 & 1,2,3-Irichlorobenzene & ND & 1.0 & \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

Continued

\section*{Sound Analytical Services, Inc.}

Carr/Associates
Lab No. 32506
Page 4 of 6
June 17, 1993

Lab Sample No. 32506-2

\section*{Client ID: FIELD BLANK}

\section*{Organic Compounds in Drinking Water EPA Method 524.2 \\ Date Analyzed: 6-9-93}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & ```
Concentration
 ug/L
``` & PQL & Flags \\
\hline 2976 & Vinyl Chloride & ND & 2.0 & \\
\hline 2977 & 1,1-Dichloroethene & ND & 1.0 & \\
\hline 2981 & 1,1,1-Trichloroethane & ND & 1.0 & \\
\hline 2982 & Carbon Tetrachloride & ND & 1.0 & \\
\hline 2990 & Benzene & ND & 1.0 & \\
\hline 2980 & 1,2-Dichloroethane & ND & 1.0 & \\
\hline 2984 & Trichloroethene & ND & \(1 \div 0\) & \\
\hline 2969 & 1,4-Dichlorobenzene & ND & 1.0 & \\
\hline 2964 & Methylene Chloride & 11 & 1.0 & B1 \\
\hline 2979 & trans-1,2-Dichloroethene & ND & 1.0 & \\
\hline 2380 & Cis-1,2-Dichloroethene & ND & 1.0 & \\
\hline 2983 & 1,2-Dichloropropane & ND & 1.0 & \\
\hline 2991 & Toluene & ND & 1.0 & \\
\hline 2985 & 1,1,2-Trichloroethane & ND & 1.0 & \\
\hline 2987 & Tetrachloroethene & ND & 1.0 & \\
\hline 2989 & Chlorobenzene & ND & 1.0 & \\
\hline 2992 & Ethylbenzene & ND & 1.0 & \\
\hline 2995 & Meta-Xylene, para-Xylene & ND & 1.0 & \\
\hline 2997 & ortho-xylene & ND & 1.0 & \\
\hline 2996 & Styrene & ND & 1.0 & \\
\hline 2968 & 1,2-Dichlorobenzene & ND & 1.0 & \\
\hline 2378 & 1,2,4-Trichlorobenzene & ND & 1.0 & \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

Continued

\section*{Sound Analytical Services, Inc.}
```

Carr/Associates
Lab No. 32506
Page 3 of 6
June 17, 1993

```

Lab Sample No. 32506-1
Client ID: SPWSD

EPA Method 524.2 (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Concentration ug/L & PQL & Flags \\
\hline 2941 & Chloroform & ND & 0.5 & \\
\hline 2943 & Bromodichloromethane & ND & 0.5 & \\
\hline 2944 & Dibromochloromethane & ND & 0.5 & \\
\hline 2942 & Bromoform & ND & 0.5 & \\
\hline & & & \multicolumn{2}{|l|}{\(\because\)} \\
\hline \multicolumn{3}{|l|}{ND - Not Detected} & : & \\
\hline \multicolumn{3}{|l|}{PQL - Practical Quantitation Limit} & \multicolumn{2}{|l|}{:} \\
\hline
\end{tabular}

Volatile Surrogates
\begin{tabular}{|l|c|c|}
\hline Surrogate . & \begin{tabular}{l} 
Percent \\
Recovery
\end{tabular} & \begin{tabular}{l} 
Control \\
Iimits
\end{tabular} \\
\hline 4-Bromofluorobenzene & 94 & \(80-120\) \\
1,2 Dichlorobenzene d4 & 80 & \(70-130\) \\
\hline
\end{tabular}

\section*{Sound Analytical Services, Inc.}

Carr/Associates
Lab No. 32506
Page 2 of 6
June 17, 1993
Lab Sample No. 32506-1
Client ID: SPWSD
EPA Method 524.2 (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Concentration ug/L & PQL & Flags \\
\hline 2212 & Dichlorodifluoromethane & ND & 1.0 & \\
\hline 2210 & Chloromethane & ND & 1.0 & \\
\hline 2214 & Bromomethane & ND & 1.0 & \\
\hline 2218 & Trichlorofluoromethane & ND & 1.0 & \\
\hline 2216 & Chloroethane & ND & 1.0 & \\
\hline 2978 & 1,1-Dichloroethane & ND & 0.5 & \\
\hline 2416 & 2,2-Dichloropropane & ND & 0.5 & \\
\hline 2430 & Bromochloromethane & ND & 0.5 & \\
\hline 2410 & 1,1-Dichloropropene & ND & 0.5 & \\
\hline 2408 & Dibromomethane & ND & \(\bigcirc 0.5\) & \\
\hline 2412 & 1,3-Dichloropropane & ND & \(0 \because 5\) & \\
\hline 2986 & 1,1,1,2-Tetrachloroethane & ND & 0.5 & \\
\hline 2994 & Isopropylbenzene & ND & 0.5 & \\
\hline 2993 & Bromobenzene & ND & 0.5 & \\
\hline 2988 & 1,1,2,2-Tetrachloroethane & ND & 0.5 & \\
\hline 2414 & 1,2,3-Trichloropropane & ND & 0.5 & \\
\hline 2998 & n-Propylbenzene & ND & 0.5 & \\
\hline 2965 & 2-Chlorotoluene & ND & 0.5 & \\
\hline 2966 & 4-Chlorotoluene & ND & 0.5 & \\
\hline 2424 & 1,3,5-Trimethylbenzene & ND & 0.5 & \\
\hline 2426 & t-Butylbenzene & ND & 0.5 & \\
\hline 2418 & 1,2,4-Trimethylbenzene & ND & 0.5 & \\
\hline 2428 & sec-Butylbenzene & ND & 0.5 & \\
\hline 2967 & 1,3-Dichlorobenzene & ND & 0.5 & \\
\hline 2030 & 4-Isopropyltoluene & ND & 0.5 & \\
\hline 2422 & n-Butylbenzene & ND & 0.5 & \\
\hline 2246 & Hexachlorobutadiene & ND & 0.5 & \\
\hline 2248 & Naphthalene & ND & 0.5 & \\
\hline 2420 & 1,2,3-Trichlorobenzene & ND & 0.5 & \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

Continued

\title{
Sound Analytical Services, Inc.
}

SPECIALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4513 PACIFIC EIGGHWAY EAST, TACOMA WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Carr/Associates
Report On: Analysis of Water

Date: June 17, 1993
Lab No.: 32506
Page 1 of 6

IDENTIFICATION:
Sample Received on 06-03-93

\section*{ANALYSIS:}

Lab Sample No. 32506-1
Cllent ID: SPWSD
Organic Compounds in Drinking Water
EPA Method 524.2
Date Analyzed: 6-9-93
REGULATED COMPOUNDS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
EPA \\
Code No.
\end{tabular} & Compound Name & Concentration ug/L & PQL & Flags \\
\hline 2976 & Vinyl Chloride & ND & \(1: 0\) & \\
\hline 2977 & 1,1-Dichloroethene & ND & 0.5 & \\
\hline 2981 & 1,1,1-Trichloroethane & ND & 0.5 & \\
\hline 2982 & Carbon Tetrachloride & ND & 0.5 & \\
\hline 2990 & Benzene & ND & 0.5 & \\
\hline 2980 & 1,2-Dichloroethane & ND & 0.5 & \\
\hline 2984 & Trichloroethene & ND & 0.5 & \\
\hline 2969 & 1,4-Dichlorobenzene & ND & 0.5 & \\
\hline 2964 & Methylene Chloride & \(\pm .2\) & 0.5 & B1 \\
\hline 2979 & trans-1,2-Dichloroethene & ND & 0.5 & \\
\hline 2380 & Cis-1,2-Dichloroethene & ND & 0.5 & \\
\hline 2983 & 1,2-Dichloropropane & ND & 0.5 & \\
\hline 2991 & Toluene & ND & 0.5 & \\
\hline 2985 & 1,1,2-Trichloroethane & ND & 0.5 & \\
\hline 2987 & Tetrachloroethene & ND & 0.5 & \\
\hline 2989 & Chlorobenzene & ND & 0.5 & \\
\hline 2992 & Ethylbenzene & ND & 0.5 & \\
\hline 2995 & Meta-Xylene, para-XYlene & ND & 0.5 & \\
\hline 2997 & ortho-xylene & ND & 0.5 & \\
\hline 2996 & Styrene & ND & 0.5 & \\
\hline 2968 & 1,2-Dichlorobenzene & ND & 0.5 & \\
\hline 2378 & 1,2,4-Trichlorobenzene & ND & 0.5 & \\
\hline
\end{tabular}

ND - Not Detected
PQL - Practical Quantitation Limit

Continued
4813 Pacific Hwy East
Tacoma, WA 98424
(206) 922-2310


\title{
SOUND ANALYTICAL SERVICES，INC．
}

SPECIALIZING IN INDUSTRIAL \＆TOXIC WASTE ANALYSIS
＋ 815 PACTFIC HIGHWAY EAST．TACONA，WASHINGTON 98424－TELEPHONE（206）922－2110－FAX（206）922－5047
WATER SAMIPLE LYFORILAMON FOR MORGANIC CEEMHCAL ANALYSES
20 NOT WRTTE IN SHADEO AREAS．PLEASE RLL BOXES NUMBERED 1 THRU 14．SEE BACK FOR DNSTRUCTIONS

\begin{tabular}{|c|c|}
\hline 2．stitex 1080 & 6．cinct ciop
A B \\
\hline \multicolumn{2}{|l|}{5．cintir：} \\
\hline \multicolumn{2}{|l|}{－} \\
\hline \multicolumn{2}{|l|}{2．552FETp\％：} \\
\hline (1) SHRBAC!
[JSPRING & \begin{tabular}{l}
【コビเ \\
tiputcues
\end{tabular} \\
\hline －．SAPLE thasx & \\
\hline （1）seroxe Tasatrixf & \[
\text { if } 4 \text { Titaz }
\] \\
\hline  & 7．SOLXCS WhyE： \\
\hline
\end{tabular}

TELSFKUNE

Exser TxEATMEXT：
if flyor loation
［！excealyarion
（J）FIGRA！「EM

\(\qquad\)
［1］Ofxix
B．LI TAEEX FRO OISTRITIOA， twolClis dotess：

Th．padif la 2hi for Insilng：
stexatuxg：
vext：
\(\qquad\)

202es8：

गttykows：
 litess tor extra egsiex，t：E．）


\title{
Sound Analytical Services, Inc.
}

SPECIALIZNNG IN INDUSTRIAL \& TOXIC WASTE ANALYSIS
4813 PACIFIC HIGKWAY EAST, TACOMA, WASHRNGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922.5047

\section*{QUALITY CONTROL REPORT}

Total Metals

Client: Carr Associates
Lab No: 32505qc2
Units: mg/L
Date: June 11, 1993
\begin{tabular}{|l|c|c|}
\hline \multicolumn{3}{|c|}{ METHOD BLANK } \\
\hline Parameter & Result & PQL \\
\hline Antimony & ND & 0.005 \\
\hline Arsenic & ND & 0.010 \\
\hline Barium & ND & 0.005 \\
\hline Beryilium & ND & 0.002 \\
\hline Cadmium & ND & 0.004 \\
\hline Chromium & ND & 0.01 \\
\hline Copper & ND & 0.025 \\
\hline Iron & ND & 0.10 \\
\hline Lead & ND & 0.003 \\
\hline Manganese & ND & 0.015 \\
\hline Mercury & ND & 0.0002 \\
\hline Nickel & ND & 0.04 \\
\hline Selenium & ND & 0.010 \\
\hline Silver & ND & 0.01 \\
\hline Sodium & ND & 0.50 \\
\hline Thallium & ND & 0.002 \\
\hline Zinc & ND & 0.02 \\
\hline ND Not Detected & PQL - Practical & Quantitation \\
\hline \(1 m i t\) \\
\hline
\end{tabular}

\footnotetext{

}


\section*{Sound Analytical Services, Inc.}

QUALITY CONTROL REPORT

General Chemistry
\begin{tabular}{ll} 
Client: & Carr/Associates \\
Lab No: & \(32505 q c 1\) \\
Matrix: & Water \\
Units: & mg/L \\
Date: & June 11, 1993
\end{tabular}

METHOD BLANKS
\begin{tabular}{|l|c|c|}
\hline Parameter & Result & \begin{tabular}{c} 
Detection \\
Limit
\end{tabular} \\
\hline Turbidity, NTU & ND & 0.1 \\
\hline Hardness (as \(\mathrm{CaCO}_{3}\) ), mg/L & ND & 2 \\
\hline Conductivity, umhos/cm & ND & 10 \\
\hline Color, color units & ND & 5 \\
\hline \begin{tabular}{l} 
Total Dissolved \\
Solids, mg/L
\end{tabular} & ND & 10 \\
\hline Fluoride, mg/L & ND & 0.1 \\
\hline Chloride, mg/L & ND & 1.0 \\
\hline Nitrate Nitrogen, mg/L & ND & 0.05 \\
\hline Nitrite Nitrogen, mg/L & ND & 0.05 \\
\hline Sulfate, mg/L & ND & 1.0 \\
\hline ND- Not Detected & & \\
\hline
\end{tabular}

ND - Not Detected

\section*{DUPLICATE}

Dup No. 32505-1
\begin{tabular}{|l|c|c|c|}
\hline Parameter & Sample(S) & Duplicate(D) & RPD \\
\hline \begin{tabular}{l} 
Total Dissolved \\
Solids
\end{tabular} & 100 & & \\
\hline
\end{tabular}

RPD = Relative Percent Difference
\[
=[(S-D) /((S+D) / 2)] \times 100
\]



\title{
Sound Analytical Services, Inc.
}

SPECLALIZING IN INDUSTRIAL \& TOXIC WASTE ANALYSIS


\footnotetext{

}

\title{
GROUND WATER CONTAMINATION Susceptibility Assessment Survey Form
}

\author{
SAMMAMISH PLATEAU WATER \& SEWER DISTRICT \\ \(1510228{ }^{\text {TH }}\) Avenue S.E. \\ Issaquah, Washington 98029 \\ (425) 392-6256
}

WELL 11.2

\title{
GROUND WATER CONTAMINATION Susceptibility Assessment Survey Form
}

Well 11.2

\section*{TABLE OF CONTENTS}
- Susceptibility Assessment Survey Form
- Production Well Location Map
- Well 11.2 Wellhead Protection Area
- Aquifer Zone IV Potentiometric Surface Map
- Topography Map - Plateau Area
- Surface Water Features - Plateau Area
- Well Log
- Construction Details
- Water Facilities Inventory Form
- Water Sample Results

\title{
Ground Water Contamination Susceptibility Assessment Survey Form
}

Version 2.2
IMPORTANT! Please complete one form for each ground water source (well. wellfield. spring) used in your water system.
Photocopy as necessary.

\section*{PART I: System Information}
well ownermanger: SAMMAMISH Plateau Water Anil Sewer Dist. Water syce name: SAMMAHISH RHATEAU WAFER T SEMER DISFZICT
County: \(\qquad\) KING
Water system number: \(\qquad\) Source number: S12
Well depth: \(\qquad\) (ft.) (From WFI form)
Source name: WUEU 11.2
\(W_{A}\) well identification ag number: \(\mathbb{A} \in D-3 \leq \underline{8}\)
\(\qquad\) well not tagged
Number of connections: \(\qquad\) Population served: \(\qquad\)
Township: \(\quad 25 \mathrm{~N}\)
Section: \(\qquad\)
Range: __OLE
1/4 1/4 Section: \(\qquad\)
Latitude/longitude (if available): \(\qquad\) 1 \(\qquad\)
How was lat./long. determined?global positioning device \(\qquad\) survey \(\qquad\) topographic map other:
\(\qquad\)
* Please refer to Assistance Packet for details and explanations of all questions in Parts If through V.

\section*{PART II: Well Construction and Source Information}
1) Date well originally constructed:
 6 9 豙 onth/day/year last reconstruction: __ \(/\) _ \(/\) month/day/year
\(\qquad\) information unavailable
2) Well driller: \(\qquad\) 10621 Teds DEAD EAST
Puvalusp. WA. G15372
\(\qquad\) well driller unknown
3) Type of well:


Additional comments: \(\qquad\)
4) Well report availathte?

X YES (attach copy to form) \(\qquad\) NO

If no well lug is available, please attach any other records documenting well construction; egg. boring logs. "as built" sheets. engineering reports, well reconstruction logs.
5) Average pumping rate: \(\qquad\) (gallons/min)
Source of intimation: WATER FACuITES Inventory
If nut documented. how was pumping rate determined? \(\qquad\)
__ Pumping rate unknown
6) Is this source treated? \(\qquad\) YES \(X\) NO

If so, what type of treatment:
_ disinfection __ filtration __ Carbon tilter __ air stripper __ other
Purpose of treatment (describe materials to be removed or controlled by treatment):
7) It store is chlorinated. is a chlorine residual maintained: \(\qquad\) YES
 NO

Residual level: \(\qquad\) (At the point closest to the source.)

\section*{PART III: Hydrogeologic Information}
1) Depth to top of open interval: \{check one\}
_ (less than) \(20 \mathrm{ft}-20-50 \mathrm{it} \quad-50-10 \mathrm{f} \quad \ldots 100-200 \mathrm{it} X\) (greater than) 200 it
\(\qquad\) information unavailable
2) Depth to ground water (static water level):
— (less than) \(20 \mathrm{ft} \quad\) _ \(20-50 \mathrm{t} \quad\) _ \(50-100 \mathrm{it} \quad X\) (greater than) 100 tt
\(\qquad\) flowing wellspring (artesian)

How was water level determined?
\(\underset{\sim}{ }\) well \(\log\) \(\qquad\) other: \(\qquad\)
_ depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure: \(N / A\)
\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feer above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir or catchment associated with this sources: \(\qquad\) YES \(\qquad\)
NA
5) Wellhead elevation (height above mean sea level):


How was elevation determined? __ topographic map \(\not \subset\) Drilling/Well \(\log \ldots\) altimeter
\(\qquad\) other: \(\qquad\)
\(\qquad\) information unavailable
6) Confining layers: (This tan be completed only for those sources with a drilling log, well log ur geologic report describing subsurface conditions. Please refer to assistance package for example.)
\(X\)
evidence of a confining layer in well log
_ no evidence of a confining layer in well log
If there is evidence of a confining layer. is the depth to ground water more than 20 feet above the bottom of the lowest confining layer?
\(X\) YES
__ NO
\(\qquad\) information unavailable
7) Sanitary sethack:
_ (less than) \(100 \mathrm{t}^{*} X 100-120 \mathrm{~A}\) \(\qquad\) \(120-200 \mathrm{tt}\) \(\qquad\) (greater than) 200 ft * if less than 100 it descrithe the site conditions:
8) Wellhead construction:

wellhead enclosed in a wellhuuse
controlled access (describe): \(\qquad\)
_ other uses for wellhouse (describe): \(\qquad\)
\(\qquad\)
- no wellhead cuntroi
9) Surface seal:
_ 18 ft
\(\qquad\) (less than) 18 ft (no Department of Ecology approval)
_ (less than) 18 ft (Approved by Ecology, include documentation)
\(\pm\) (greater than) 18 ft
\(\qquad\) depth ot seal unknown
\(\qquad\) nu surtace seal
10) Annual rainfall (inches per year):
__ (less than) \(10 \mathrm{in} / \mathrm{yr}\)
_ \(10-25 \mathrm{in} / \mathrm{yr}\) X (greater than) \(25 \mathrm{in} / \mathrm{yr}\)

\section*{Part IV: Mapping Your Ground Water Resource}
1) Annual volume of water pumped: \(\qquad\) (gallons)

How was this determined?
\(\qquad\) meterestimated:
__ pump capacity \(\qquad\)
\(\qquad\) other: \(\qquad\)
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time :


2540


These are the cfes PER THIS PACKET. THE (it) DISTRICT HAS ADDITION H luhpa capture zone
(it) INFO FOZ TiU WEU WHICH IS ATTACHED. THE FLOWING
(i) quESTIONS ARE AsL: FOR THE CAPE ZANE IDENTIFIED ON THE WHPA HAB

Length of screened/open interval:

(ft)
3) Is there a river, lake. pond. stream. or other obvious surface water body within the 6 month time of travel boundary? - YES X NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility. treatment lagoon, or holding pond located within the 6 month time of travel boundary? \(\qquad\) YES NO (mark and identify on map).
Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\footnotetext{
Survey form Var. 2.2
}
page 5

\section*{PAR'V V: Assessment of' Water Quality}
1) Regional sources of risk to ground water:

Please indicate it any ut the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:
likely pesticide application
stormwater injection wells
other injection wells SEE Cewillents abandoned ground water well landfills. dumps, disposal areas
known hazardous materials clean-up site
water systems) with known quality problems population density (greater than) 1 hususe/acre residences commonly have septic tanks
Wastewater treatment lagoons
sites used for land application of waste
6 month 1 year 5 year unknown


Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:
* WEUEU S (As SHewn On THE Aquifer ZOnE iv POIENTIOMETRK SURFACE MAP) HAS BEEN USED


Gromowarer Recharge Deasect.

\footnotetext{
Survey Form Der. 2.2
}
pages
2) Source specific water quality records:

Please indicate the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment. MOLs are listed in assistance package.)

*If any SOC in addition to EDB/DBCP were detected. please identify and date. If uther SOC tests were performed. but no SOC detected. list test methods here: \(\qquad\)
\(\qquad\)
\(\qquad\)

The test results for test performed on MEL II. 2 at the time of Construction are Enclosed.

\author{
Survey Form Var. 2.2
}
page 7

\section*{E. Bacterial contamination:}

Any bacterial detections) in the past 3 years in samples taken from the source (nut distribution sampling records).

Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source.

Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a}

\section*{Non-Circular Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.
1) ls there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Dues the largest circle extend over a stream. river. lake, up a steep hillside, and/ur over a mountain or ridge?)
\[
X \text { YES _ NO }
\]

Describe with references to map produced in Part IV:
EnGLEWICOD CREEK IS LOCATED WITTIN THE
ONE YEAR BOUNDARY. VARIOUS WETLANDS ARE ALSO LOCATED IN THE FIVE AND TEN YEAR BOUNDARIES.
2) Aquifer Material:
A) Does the drilling log, well log or other geulogic/engineering reports identity that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?
\[
\text { _ YES } \underline{Y} N O
\]
B) Dues the drilling log. well lug or uther geulogic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?
\[
X_{Y E S} \quad \ldots N O
\]
3) Is the source located in an aquiter with a high horizontal how rate? (These can include sources located on thood plains of large rivers. artesian wells with high water pressure, and/or shallow flowing wells and springs.)
_ YES

4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs?
a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...

6 month travel time
6 month-1 year travel time
1-5 year travel time
YES NO unknown
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...

1 year travel time


Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Ver. 2.2
page 9

\section*{Suggestions and Comments}

Did you artend one of the susceptibility workshops?
_ YES
\(-\mathrm{NO}\)

Did you find it useful?
__ YES
_ NO
Did you seek outside assistance to complete the assessment?
__ YES
- NO

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package hetp you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additionai/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Ver. 2.2
page 10







STATE OF WASHINGTON
stant Card No．\(a /=16284\)
Unique Weil I．D．\＃AAD382

Water Right Pormil No．Gl－ 25072
i）OWNER：Nam Samenish platern hater and Sener District
（2）LOCATION OF WELL：County Ting

（ Dist．，Nb，414e Bechrod，Ma
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline （3） & \multicolumn{2}{|l|}{PROPOSED USE：} &  & & Indualeta Tesi We & & & Munict
Othor & L 1 \\
\hline \multirow[t]{2}{*}{4} & \multicolumn{7}{|l|}{\[
\text { TYPE OF WORK: Ownere number ol well (il more han ona) } 11 .
\]} & & \\
\hline & ADandoned \(\square\) & Now Desp Reco & well enad \(\square\) ndiltoned & & hod： C． R & Dug able otary & 号 & & 吕 \\
\hline 5） & DIMENSIONS： & Dia & er of woll & & 16 & & & & \\
\hline
\end{tabular}
．5）DIMENSIONS：Diameter of wall＿＿16＿＿＿inches． Drilted＿885 leel．Depth of completed well＿ 884 ＿It．
6）CONSTRUCTION DETAILS：

a．
Perforations：Yes \(\square\) No［X］
Type of pertorator used
SIZE ol partorations
In．by
Addreas

\[
-
\]

1）OWNER：Nam
（10）WELL LOG or ABANDONMENT PAOCEDURE DESCRIPTIO
 with al lequat one antry for each change of finformailon．
\begin{tabular}{|c|c|c|}
\hline material & \({ }^{89} 9\) & To \\
\hline Hardpan & 0 & 4 \\
\hline Silthound Gravels，Brown & 41 & 4 \\
\hline Silthound Sands and Gravels． & & 6 \\
\hline Brarn． & 61 & 8. \\
\hline Silithond Soms and Grapls，Bedish＿non & 82 & 11 \\
\hline Sithard＿smis and＿Oavels，Pron & 112 & \(1 \times\) \\
\hline Siltumismos am＿Gravels，Hran：MB & 170 & 185 \\
\hline Incer Samis and Gravels，he & 185 & 200 \\
\hline Sads and Gravels rith tracesilt & 20 & 205 \\
\hline Sans＿ad Gruels xith Silt． & 25 & 212 \\
\hline Stris，Cavels，arioothles． & 212 & 219 \\
\hline Silty－cray with Peat acd＿Gands & 21. & 228： \\
\hline Silthand Stads & 228 & 233 \\
\hline Sithand Sandeandecovels & 233 & 278 \\
\hline Silthund＿civels and oftites & 788 & 296 \\
\hline Silthandisme，Gavels＿and＿ottles & 296 & 323 \\
\hline Silthand Simis＿aricravels & 323 & 358 \\
\hline Sithrand Sexis，Gravels ard chales & 358 & 369 \\
\hline Silthamisans＿am＿acivels． & 389 & 394 \\
\hline Silty Sads，Scaviels＿and ofthles： & 394 & 417 \\
\hline Suns and Gruels xith trace of silt & 417 & 434 \\
\hline Sily Sinds，Grivels＿aniodhies & 434 & 455 \\
\hline Saris and Crapls & 465 & 471 \\
\hline Sitham Sans＿anderachs． & 411 & 45 \\
\hline IncerSarts－rith trace Gravels & 42 & 494 \\
\hline Eine Saxis－rith－Trace fraveis axd cothles & 494 & 5 \\
\hline Fine silty Saris－with－rece－arvels－ard & & \\
\hline cotios & 55 & 500 \\
\hline Silthani Sinds，Guy & 500 & 550 \\
\hline Oontinud＿an pext form pages & & \\
\hline Nbe：Einal development and texting hasmold & been & e \\
\hline as＿of＿cuplertion－date． & & \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Workelinied \(4 / 7 / 93\)－ 10. compleled \(8 / 6 / 53\)} \\
\hline
\end{tabular}

1）WELL TESTS：Drawdown in anown wator lovel ia lowored betow static level Wes a pump leat made？Yas \(\square\) No If yea，by whom？
Yold： \(\qquad\) －gel．／min．with \(\qquad\) If．drawdown alter \(\qquad\)

\section*{WELL CONSTRUCTOA CERTIFICATION：}

I conalructed and／or aecept reaponsibfily for construction of this well． and ita complitare with stll Whatington well construction stangterds． Materimla used and the information reporied above tore try to my best knowiedge and bellel．
 from will lop to water fevel） Land－owinece slavilion 360.
ibove mian sen lovel —HPI


It 10
—＿＿＿\({ }^{1}\)
H．
－offlorallona from
a． 10
－a．


Surface seal：\(Y_{0}\left[\begin{array}{lll}{[ }\end{array}\right]\) To whal depth？＿＿＿ 43 nt．
ralused in soal Canchen
Okd any atrati coniain unueable walar？Yen \(\square \quad \mathrm{No} \square\)
Type ol walerf
－Depth of alrala
Mothod of swaling strata off
＇）PUMP：Manufacturoris Name
Type：
1）WATER LEVELS：
slaticieved 235 \(\pi\).

Artasten presaure
A．below top ot we：l Dete E／E／g Nactian water le contrite be per equare math Oute
\[
\text { (cose rater, } \cdot \tan )
\]

．

\section*{Nams fhit Dellyitry，Inc．}



(2) LOCATION OF WELL: Counly_King _


5) DIMENSIONS: Dlameler of well__ 16 Drilled_885 leal. Depth of completed wols___88._In.
5) CONSTRUCTION DETAILS:


Pertorallont: Yes \(\square\)


Type of parforator veed \(\qquad\) ln, by \(\qquad\) partoritions from
pertoralkon from
pertorations from \(\qquad\) It. 10
h. 10
R. 10 ——A.
\(\qquad\)

\section*{Scraens: Yas \(\square\) No \(\square\)}

Manutacturar' 4 Name
Type
Diam_
Olem fi.



Did shy tirela coniain uruseble welert Yosi No \(\square\)
Type of whier?
Nolhod of tesitng strite olt
7) PUMP: Manulacturoro Name
'8) WATER LEVELS: Land-euriace slovation bove minan sete level til
Slatic ievel \(\qquad\)
\(\qquad\) f. below lop of wall Dell

Artealan preanure \(\qquad\) tbe. per squere ineh Date
Artesian water la centrolled by
7) WELL TESTS: Drawiong If ampint walep fawel la lowered below of atio ieval Wan apurp iest mede? Yes NoL. It yet, by whomb.

(10) WELL LOG Or ABANDONMENT PROCEDURE DESCRIPTION

Formalion: Deaceibe by color, character, elze of matistial and atructure. and ihom thicikneas of aquiters and the kind and nalype of the malarial in each atraturn penelralec wh allasal one entry lof aseh chinge ol informallen.



\section*{WELL CONSTRUCTOR CERTIFICATION:}

I conctrueted andfor aceapl responsibility for conalruction of this weil and lis complance whih alh Washington well conalruction siandards Maleriala uned and the Intormation reporied above are true to my bes: knowiedge and bellel.

NAME_Halt Orililo TnO

तथve on Minn
Adrose 10621 Todd Road East, Ruyallupe


98372
Contrsetors HOTHIL Damers
Aegistration HOLTDI \(\$ 13606\)

\(\because\)



\section*{PRODUCTION WELL 11.2 \\ CONSTRUCTION AND TESTING REPORT SAMMAMISH PLATEAU WATER AND SEWER DISTRICT}

\section*{SUMMARY}

Weil 11.2 is located on the north side of the Eastlake High School campus, approximately 25 feet from Sammamish Plateau Water and Sewer District (District) Well 11.1. It is completed at a depth of 884 feet in a sand and gravel aquifer designated Zone IV of the Plateau Aquifer System. Water quality is excellent and meets ail Washington State Department of Health \((\mathrm{DOH})\) requirements for a potable water source.

Test pumping results indicate Well 11.2 is capable of producing 2,000 gallons per minute (gpm). At a pumping rate of 973 gpm for 24 hours, the drawdown was 51 feet for a specific capacity of 19 gallons per minute per foot ( \(\mathrm{gpm} / \mathrm{ft}\) ). The aquifer transmissivity is about 38,000 gallons per day per foot (gpd/ft).

Water level monitoring during the 24-hour pumping test showed no interference on water levels in monitoring Wells PT-3.1 and 3.2, Well 11.1, or other nearby wells completed in zones above the Zone IV Aquifer. The Washington State Department of Ecology (Ecology) has issued a permit for 500 gpm and 565 acre feet per year (at/yr) from this well. Currently, the District is monitoring water levels to record possible interference from other wells and the seasonal water level changes in this aquifer.

\section*{BACKGROUND}
\begin{tabular}{ll} 
Property owner: & Lake Washington School District \\
Well owner: & Sammamish Plateau Water and Sewer District \\
Hydrogeologist: & AGI Water Resources Group, Scott Coffey \\
Drilling contractors: & Holt Drilling, Inc.; Schneider Drilling Co., Inc. \\
Drilling method: & Cable-tool, fluid-rotary \\
Start date: & April 7, 1993 \\
Completion date: & August 6,1993 \\
Pumping test date: & August 30,1995
\end{tabular}

\section*{PERMITS AND APPLICATIONS}

Copies of the water right application and preliminary permit are included in the Appendix.

Unique Well ID number:
Start card number:
Water right permit number:
Instantaneous:
Annual:
Continuous equivalent:

AAD382
16284
G1-26572P
500 gpm
\(565 \mathrm{at} / \mathrm{yr}\)
350 gpm

\section*{OBJECTIVES}

The objectives of constructing this well were to:
- Create additional supply for the District with a 16 -inch production weil capable of sustained yields of 500 gpm or more from the deep aquifer identified during the drilling of Test Well PT-3.
- Characterize the deep aquifer and aquitard zones encountered and determine potential interference with other District production wells.

Desired yield: \(\quad 500 \mathrm{gpm}\) or more

\section*{Target aquifer: Plateau Aquifer Zone IV}

Required quality: Potable

\section*{WELL SITE}

The well site, illustrated in Figure 1, is located 50 feet south of the dead end on 233 rd Avenue NE. Access to the site is through the Eastlake High School parking lot to the baseball fields.

County:
Ground surface elevation:

King
\(355.86 \mathrm{ft} . \mathrm{msl}\)

\section*{COMPLETION RECORD}

Well 11.2 is completed in accordance with WAC 173-160, effective May 5, 1988, and meets ail requirements for a State of Washington Group A public supply well. The well completion record is illustrated in Figure 2 and described on the Water Well Report (Form ECY 050-1-20) in the Appendix.

Total depth drilled: \(\quad 885 \mathrm{ft}\).
Completion depth: \(\quad 884 \mathrm{ft}\).

Surface Seal
Depth of seal: 43 ft .

Type of sea/:
Cement

\section*{Casing Record}

Cable-tool drilling began in April, 1993 with a temporary 30 -inch surface seal casing to a depth of 43 feet. Drilling continued with 24 -inch casing to 352 feet, 20 -inch casing to 630 feet, and 16 -inch casing to 705 feet. Below 705 feet, 16 -inch drilling advanced to a total depth of 885 feet using fluid-rotary drilling methods. An 8 -inch pipe-size, 0.030 -inch slot, stainless-steel screen assembly was sand packed into position adjacent to waterbearing sediments encountered between depths of 785 and 880 feet.
\begin{tabular}{lll} 
Casing Depth & Dlameter & Description \\
0 to \(352 \mathrm{ft}\). & 24 -inch & mild-steel \\
0 to 630 ft. & 20 -inch & mild-steel \\
+20 to 705 ft & 16 -inch & mild-steel
\end{tabular}

A continuous wrap, wire-wound, welded well screen manufactured by Johnson Division of Wheelabrator Corporation was installed as listed below:

Screen Depth
845 to 646 ft .
646 to 655 ft .
655 to 660 ft .
660 to 785 ft .
785 to 821 ft.
821 to 839 ft .
839 to 880 ft .
880 to 884 ft .

Dlameter
8-inch, PS
8-inch, PS 8-inch, PS B-inch, PS 8-inch, PS 8-inch, PS 8 -inch, PS 8-inch, PS

\section*{Description}
right-hand threaded nipple
blank, mild-steel casing type 304, 0.030 -inch stot, stainless-steal relief screen blank, mild-steel casing type 304, 0.030 -inch slot, stainless-steel well screen blank, mild-steel casing type 304, 0.030-inch slot, stainiess-steel well screen blank, mild-steel casing with plate bottom

Filter Media
Filter pack: Colorado Silica Sand (CSS) \(8-12\) placed from 645 to 884 ft .

\section*{HYDROGEOLOGIC LOG}

The hydrogeologic log is illustrated in Figure 3 and described in the Water Well Report in the Appendix. Three significant water-bearing zones were encountered at Well 11.2.

The shallowest water-bearing zone encountered is at a depth of 170 feet, where tight sand and gravel grades to loose, clean sand and gravel at 185 feet. These clean sands and gravels persist to a depth of 200 feet, where they become slightly silty with increased cobble content. Between 219 and 394 feet, the sediments are not water-bearing. They consist primarily of silt-bound sand and gravel. A layer of thin, silty clay with peat is found between depths of 219 and 228 feet.

At 394 feet, another water-bearing sand, gravel, and cobble zone is present to a depth of 520 feet. One thin, silt-bound layer is present from 471 to 475 feet. Well 11.1 is 25 feet east of Well 11.2 and is completed between depths of 409 and 489 feet in that zone.

The third, most significant water-bearing zone was encountered between depths of 709 and 884 feet. This zone consists of sand, gravel, and cobbles with varying amounts of silt content.

\section*{GEOPHYSICAL LOG(S)}

Geophysical logs are a useful tool for indicating potential water-bearing zones. However, they neither assure the presence of water or quantify the amount of water available. The electric log, illustrated in Figure 3, shows the measured amount of electrical resistance caused by various strata as electrical current passes through them. This log is a useful tool for comparison with the lithologic log and field notes in determining screen placement. Resistivity values greater than 1,000 ohm-feet generally indicate good aquifer material. In Weil 11.2 , electrical resistance was measured at 2.5 -foot intervals in the lower water-bearing zone found between depths of 709 to 885 feet. Resistivity values averaging \(1,000 \mathrm{ohm}\)-feet incicated potentially good water-bearing materials between depths of 790 and 813 feet. From 840 to 873 feet, the resistivity values increased to an average of 1,200 ohm feet, indicating greater water-bearing potential.

\section*{STATIC WATER LEVELS}

Static water level data from Zone IV wells indicate a ground water gradient of about 0.002 to the west. The static water level is measured below ground surface (bgs) and shown
in Table 1 below: in Table 1 below:

Screen depth:
785 to 880 ft.
Measuring point stickup:
2.15 ft .

Measuring point elevation:
358.01 ft. (TOC 16")

Table 1
Measured Static Water Levels at Well 11.2
\begin{tabular}{|c|c|c|}
\hline Date: & Static Water Level (ft: bgs) & \begin{tabular}{l}
Water Level Elevallon \\
( \(\mathrm{ft}, \mathrm{ms}\) )
\end{tabular} \\
\hline August 24, 1995 & 234.42 & 123.59 \\
\hline August 25, 1995 & 237.72 & 120.29 \\
\hline August 28, 1995 & 236.65 & 121.36 \\
\hline August 29, 1995 & 232.85 & 125.16 \\
\hline
\end{tabular}

\section*{PUMPING TEST}

A pumping test was conducted at Well 11.2 on August 29 and 30,1995 . The purposes of this test were to:
- Determine the performance characteristics and optimum yield of the well.
- Confirm the well completion in Aquifer Zone IV by noting interference to pumping in nearby wells in the same aquifer.
- Determine the water quality and evaluate the lateral extent of Aquifer Zone V by monitoring water level changes in the Plateau wells.

\section*{Pre-test Development}

After the completion of Well 11.2 in August 1993, final development was delayed due to the start of the school year. Because of the short period of time allotted for final development and the long period since the completion of the well, the entire screen section of Well 11.2 was water jet developed prior to testing.

Two days of water jet/pump development accompanied by short pumping tests did not significantly increase the well's specific capacity of \(22 \mathrm{gpm} / \mathrm{ft}\) of drawdown (gpm/tt-dd). The foilowing day a line-shaft turbine pump was installed in Well 11.2 for a 24 -hour pumping test. The results of this test are shown below.

\section*{Pumping Test Results}

Results of the pumping test in Aquifer Zone IV at Well 11.2 are illustrated in Figures 4, 5,6 , and 7. To conduct the test, a line shaft turbine pump was installed in the well to a depth of 343 feet. The results of this 24 -hour pumping test are:

\section*{Screened zone: \\ 785 to 880 ft.}

Test date:
Initial water level:
August 29-30, 1995

Discharge rate (Q):
232.85 ti. below measuring point

Discharge rate (Q): \(\quad 973 \mathrm{gpm}\)
Pumping duration: 24 hrs

TECHNOLOCIES
Drawdown: \(\quad 51.01 \mathrm{ft}\)
Specific capacity: \(\quad 19 \mathrm{gpm} / \mathrm{ft} . \mathrm{dd}\)

\section*{Transmissivity}

Transmissivity is a measure of permeability for the full aquifer thickness. It is the amount of water that flows through a vertical, one-foot wide strip of the aquifer in one day (under unit gradient). The average transmissivity can be calculated from the drawdown, recovery, \(\mathrm{T} / \mathrm{t}\), and distance drawdown data shown in Figures 4 and 5. Aquifer Zone IV at Well 11.2 has an average transmissivity of \(38,000 \mathrm{gpd} / \mathrm{ft}\).

\section*{Interference}

To note interference with nearby production and monitoring wells, Production Well 5 (Zone IV) and the three completions in Well PT-3 (Zones I, II, and IV) were monitored during the 24 -hour test.

Figures 6 and 7 show hydrographs of the nearby wells during and after the 24 -hour pumping test at Well 11.2. The hydrographs in Figure 6 indicate no interference in Aquifer Zones I, II, and ill at PT-3.1, PT-3.2, and Well 11.1 during the 24 -hour test. The lack of response in any of these wells during the test indicates Well 11.2 is hydraulically isolated from water-bearing Zones II and III monitored during the test at PT-3.1, PT-3.2, and Well 11.1.

Wells whose water levels were impacted by pumping are shown in Figure 7. Well 5, approximately 4,000 feet to the southwest in Aquifer Zone IV, responded to the test with a total of 16 feet of drawdown. PT-3.3, 180 feet to the south and also completed in Aquifer Zone \(\mathbb{V}\), responded to the test with a total of 27.5 feet of drawdown. The response at the observation wells in Zone IV suggests Well 11.2 is completed in Zone IV.

\section*{WATER QUALITY}

During testing, water pumped from Well 11.2 was sand free, clear, odorless, and tasteless. Water samples were collected for both field and laboratory analyses.

Field Analyses
Fieid analyses of selected water quality parameters were performed during the 24-hour pumping test. These results are summarized below:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Date & Specific Conductance ( \(\mu \mathrm{mhos} / \mathrm{cm}\) ) & \[
\begin{aligned}
& \mathrm{pH} \\
& \left.{ }^{\circ} \mathrm{F}\right)
\end{aligned}
\] & Temperature (NTU) & Turbldity (mg/L) & Hardness ( \(\mathrm{mg} / \mathrm{L}\) ) & Iron \\
\hline 8/30/95 & 156.6 & 7.15 & 53.6 & 0.45 & 65 & 0.02 \\
\hline
\end{tabular}

\section*{Laboratory Analyses}

Samples for laboratory analysis were collected after pumping 23 hours at 973 gpm . Laboratory reports are included in the Appendix.

\section*{Inorganic Test Results}

A sample for inorganic chemical analysis was collected August 30, 1995 after pumping 23 hours. The analysis, performed by Water Management Laboratories Inc., shows all primary and secondary parameters to be under maximum contaminant levels.

The complete results are summarized on Table 2. Table 2 compares the inorganic results with those of Wells 4 and 5, completed in Aquifer Zone IV. The comparison shows the water quality results from the three wells to be nearly identical, suggesting Well 11.2 is completed in Aquifer Zone IV.

\section*{Volatile Organic Test Results}

The results of the volatile organic analysis, completed by Water Management Laboratories inc., revealed no detectable levels of either regulated or non-reguiated volatile organic compounds.

\section*{Bacteriological Test Results}

The bacteriological test, completed by Water Management Laboratories Inc., showed coliform bacteria present. The bacteria sample was taken at the open discharge orifice at the end of approximately 1,000 feet of lay-flat pipe. The lay-flat pipe was not sterilized before testing and most likely caused the sample to become contaminated.

Table 2
Comparison of inorganic Test Resulte
\begin{tabular}{|c|c|c|c|}
\hline Parameter & W-W0ll 4 \% \% & Well 5 & W Well 11.2 \% \\
\hline Qate Received & 3/2/93 & 3/2/93 & 8/30/95 \\
\hline Arsenic mgh & <0.01 & \(<0.01\) & \(<0.01\) \\
\hline Barium mg/L & \(<.10\) & \(<.10\) & <,10 \\
\hline Cadmium mg/L & \(<0.002\) & \(<0.002\) & \(<0.002\) \\
\hline Chromitrm mght & \(<0.05\) & \(<0.05\) & \(<0.01\) \\
\hline Iron mghl & <0.05 & \(<0.05\) & \(<0.03\) \\
\hline Lead mg/L & \(<0.002\) & \(<0.002\) & \(<0.002\) \\
\hline Manganese mg/L & \(<0.043\) & \(<0.041\) & \(<0,036\) \\
\hline Marcury mghl & \(<0.0002\) & \(<0.0002\) & \(<0.0005\) \\
\hline Selenium mgh & \(<0.005\) & \(<0.005\) & \(<0.005\) \\
\hline Sllver mg/L & <0.01 & \(<0.01\) & \(<0.01\) \\
\hline Sodium mgh & 9 & 7.7 & 6 \\
\hline Hardness mgh as \(\mathrm{CaCo}{ }^{3}\) & 85 & 85 & 70 \\
\hline Canductivity \(\mu\) minoa & 160 & 150 & 147 \\
\hline Turbidity NTU & 0.17 & 0.15 & 0.4 \\
\hline Color Units & 5 & 5 & \(<5\) \\
\hline Fluoride mg/L & <0.50 & \(<0.50\) & \(<0.02\) \\
\hline Nitrats mg/L & \(<1.0\) & <1.0 & . 20 \\
\hline Chloride mgh & \(<20\) & \(<20\) & 2 \\
\hline Sulfatemgh & \(<10\) & \(<13\) & 1 \\
\hline TDS mg/L & - & - & 105 \\
\hline Copper mg/h & \(<0.02\) & \(<0.02\) & \(<0.02\) \\
\hline Zinc mgh & \(<0.05\) & \(<0.05\) & \(<.05\) \\
\hline
\end{tabular}

\section*{Radionuclide Test Results}

Analysis of racionuclides by the State of Washington Department of Health Raciation Laboratories shows the radiation and radon levels are well below the maximum contaminant levels (mcls).
\begin{tabular}{lll} 
Parameter & Level & MCL \\
Gross Alpha: & \(<3.0 \mathrm{pCl} / \mathrm{L}\) & none \\
Gross Beta: & \(<4.0 \mathrm{pCl} / \mathrm{L}\) & 50 pCl \\
Radon-222: & \(115+1-20 \mathrm{pCi} / \mathrm{L}\) & \(300 \mathrm{pCl} / \mathrm{L}\) (recommended mcl)
\end{tabular}

\section*{OPTIMUM YIELD}

Optimum yield is the maximum amount of water a well can safely produce. It is the product of the long-term specific capacity and safe drawdown. Safe drawdown allows for pump submergence requirements and seasonal and other natural water level changes, including interference from other sources.

Details of the optimum yield calculation for Well 11.2 are included in the Appendix.
Safe drawdown:
105 ft.
Long-term specific capacity (SC):
\(19 \mathrm{gpm} / \mathrm{tt}-\mathrm{dd}\)
Safe yield (s x SC):
\(2,000 \mathrm{gpm}\)

\section*{CAPTURE ZONE}

\section*{Wellhead Protection Area (WHPA)}

A WHPA is defined as the surface and subsurface area surrounding a public water supply well through which potential contaminants are likely to pass before reaching a production well. In Washington, WHPAs are defined by the time of travel (TOT) for ground water to move from its point of infiltration to its point of discharge at the well. The 10-year TOT boundary forms the boundary of the WHPA and defines the area to be inventoried and managed to reduce the risk of potential contamination.

The purpose of a WHPA delineation is to describe the size and shape of that portion of the aquifer contributing ground water to the well. This area is known as the well's Capture Zone. Data are usually insufficient to completely and accurately define the exact size and shape of the capture zone. The Washington State Department of Health (DOH)
has adopted four methods to delineate a WHPA. In order of increasing compiexity, they are:
- Calculated Fixed Radius
- Analytical Models
- Hydrogeologic Mapping
- Numerical Flow/Transport Models

A preiliminary delineation is now required for all new public water supply wells. The calculated fixed radius method is normally used before the well is constructed and,tested.

Because it has more than 1,000 service connections, the District must use an analytical model or better to delineate its WHPA. Data are available to the District to allow this level of delineation for Well 11.2.

\section*{Capture Zone Analysis}

The EPA has developed a set of analytical models that utilize aquifer properties to calculate the boundaries of the capture zones for a well based on continuous pumping at a particular rate. The pumping rate input to the model is reduced from Weil 11.2's instantaneous rate of \(2,000 \mathrm{gpm}\) to the continuous rate required ( 350 gpm ) to pump the annual water right of 565 acre feet. DOH requires determination of capture zones for 1 -, 5 -, and 10 -year TOT for each well. The EPA WHPA analytical model GPTRAC was used to calculate the capture zones for Well 11.2.

The shape of the capture zone is determined by the aquifer's hydrologic properties and the direction and gradient of the ground water flow in the aquifer. The flow direction in aquifer Zone IV at Weil 11.2 is to the west, as shown on Figure 8. The gradient of 0.002 in the Zone IV aquifer is estimated from limited water level data. The \(1-5\)-, and 10 -year TOT capture zones for Well 11.2 are illustrated on Figure 9. The capture zone is elongated to the east, indicating that the well draws its water primarily from the upgradient direction.

Although the capture zone covers a significant area around Well 11.2, its susceptibility to contamination is very low due to its depth and the low permeability sediments overlying the aquifer (see Flgure 2).

Environmental Heath
'ATER FACILITIES INVENTCRY (MY
Fead Instructions on back before completing

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{2}{|l|}{SAY TELEFPMONE} & \multicolumn{2}{|l|}{Jais} \\
\hline \multicolumn{2}{|l|}{} & NO Chance &  \\
\hline \multicolumn{4}{|l|}{-OL SYSTEM NAME - ENTËR ONLY :F CMANGING WITH THIS WFI} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9. NUMEEA ACTIVE RESDENTIAL CONMECTION:
\[
11030
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10. NUABER ACTIVE AESLOENTIAL popllation
\[
33.2+0
\]}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{SYSTEMS SEMUNG ANY NON-RISSIBENIS (LE TRAVEUERS GMPLOYESS, STUOENIS EICL CONPLEIE THIS SECTION} \\
\hline \multicolumn{4}{|l|}{14. MUMEER NON-AESDENTIAL CONNECTICNS} \\
\hline \multicolumn{4}{|l|}{12 ENTER AVERAGE DAILY NONRESICENTLAL PQPULATION SदृRVED FOR EACH MONTH, MAKE ENTRY FOR EACH MONTH} \\
\hline  &  & ast & Soct \\
\hline \multicolumn{4}{|l|}{i3. OOES THE SYSTEM SERVE AT IEAST 25 OF THE SAME NONAEESIDENTS FOR \& OR MCRE DAYS PER NEEK FOR AT LEAST 180 DAYS PSR YEAR?
\(\square\) YES \(\square\) No} \\
\hline \multicolumn{2}{|l|}{14. TOTAL NUMEEA CONNEGTIONS METERED \(1!.980\)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
15. OTSTRIBUTION AESEAVOHAS TOTAL CAPACITY
\[
\lfloor 3.135 .006
\] \\
GRLIONS
\end{tabular}} \\
\hline
\end{tabular}

'ATER FACILITIES INVENTORY (Y
Environmental Health
Read Instructions on back before completing



27:-2…29v. 2.34:


1515 80th St．E． Tacoma，WA 98404 531.3121

September 21， 1995

AGI Technologies
PO Box 1158
Gig Harbor，WA 98335
Attn：Scott Coffee

Dear Sir：

Results of analysis of one ground water engineering sample taken by yourself on 08－30－95 at 10：26 a．m．and received 08－31－95 at 9：45 a．m． are as follows：
\begin{tabular}{|c|c|}
\hline atificat & Sammamish Plateau Water and Sewer District Well 11.2 \\
\hline Test & Result \\
\hline Antimony & \(<0.002 *\) \\
\hline Arsenic & ＜0．01＊ \\
\hline Barium & ＜0．1＊ \\
\hline Beryllium & ＜0．002＊ \\
\hline Bicarbonate & 75 \\
\hline Cadraium & ＜0．002＊ \\
\hline Calcium & 18 \\
\hline Carbonate & 0 \\
\hline Chloride & 2 \\
\hline Chromium & ＜0．01＊ \\
\hline Color & ＜5＊ \\
\hline Copper & ＜0．02＊ \\
\hline Cyanide & ＜0．1＊ \\
\hline Ėuozide & く 2．こ「 \\
\hline
\end{tabular}
```

AGI Technologies
September 21, }199
page 2

```
\begin{tabular}{|c|c|}
\hline Test & Reault \\
\hline Iron & < 0.03* \\
\hline Lead & < 0.002* \\
\hline Magnesium & 6 \\
\hline Manganese & 0.036 \\
\hline Mercury & < \(0.0005 *\) \\
\hline Nickel & <0.04* \\
\hline Nitrate Nitrogen & < 0.2 * \\
\hline Nitrite Nitrogen & < 0.2* \\
\hline Potassium & 2.0 \\
\hline Selenium & < 0.005* \\
\hline Silica & 35 \\
\hline Silver & < \(0.01 *\) \\
\hline Sodium & 6 \\
\hline Specific Conductivity & 147 \\
\hline pH & 8.1 \\
\hline Sulfate & 1 \\
\hline Thallium & < 0.001 * \\
\hline Total Dissolved Solids & 105 \\
\hline Total Hardness & 70 \\
\hline Turbidity & 0.4 \\
\hline Zinc & \(<0.05 *\) \\
\hline Total Coliform & Present \\
\hline E. Coli & ALsent \\
\hline
\end{tabular}

AGI Technologies
September 21, 1995 Page 3
* < is less than

All results are in milligrams per liter except color which is in color units, pH which is in pH units, specific conductivity which is in micromho per cm and turbidity which is in nephelometric turbidity units. Bicarbonate, carbonate and total hardness are in milligrams per liter as calcium carbonate. Total Coliform results are per 100 mils.

Microbiology Lab Number: 08997646
Chemistry Lab Number: 08922385
Sample was analyzed according to Standard Methods for the Examination of Water and Wastewater, 18 th Edition.

Chain of Custody record and results of Voc analysis are enclosed. Sincerely,
hame ofuipound
Diane DuMond
Lab Coordinator

DD:jlp
enclosure
cc: Ron Little, SPWSD

\section*{VOLATILE ORGANIC CHEMICAL REPORT}

\author{
Resuits by Analysis by EPA Method 524.2 \\ Measurement of Purgeable Organic Compounds In Water by Capillary Column \\ Gas Chromatography/Mass Spectrometry
}

Send Report Tos
Scott Coffey
P.O. Box 1158

Gig Harbor, WA 98335

\section*{Bill: Rau Little}

Sammamish Plateau Water and Sewer District 1510 228th Ave, SE
Issaquah, WA 98027

COUNTY
1 King
SYSTEM NRME
SYSTEM ID NO. : Now
DATE COLLECTED: OB/30/95
DATE ANALYZED : 09/05/95
SOURCE NUMBER : 501
SOURCE TYPE : Well

LABORATORY NO
DATA FILE
ANALYST
DATE OF REPORT
SUPERVISOR'S INITIALS
11.2

1089
108972539
: William Adams
: September 7, 1995
: LJMR


\title{
GROUND WATER CONTAMINATION
}

Susceptibility Assessment Survey Form

\title{
SAMMAMISH PLATEAU WATER \& SEWER DISTRICT 1510 228TH Avenue S.E. \\ Issaquah, Washington
}
(206) 392-6256

\section*{WELL 12}

\section*{GROUND WATER CONTAMINATION}

Susceptibility Assessment Survey Form

\section*{TABLE OF CONTENTS}
- Susceptibility Assessment Survey Form
- Well Site Location Map
- Construction and Testing Report

Ground Water Contamination
Susceptibility Assessment Survey Form
Version 2.2
IMPORTANT!
Please complete one form for each ground water source (well, wellfield, spring) used in your water system.
Photocopy as necessary.
PART I: System Information


County: \(\qquad\) 4.

Water system number: \(\qquad\) 400009

Source number: \(\qquad\)
Well depth: \(\qquad\) 10 (f.) (From WFI form) /OElGINTHLV CACCHOE VIEMi

Source name:

WA well identification tag number: \(\qquad\)
\(\qquad\)
\(\qquad\) well not tagged

Number of connections: \(\qquad\) \(10, \mathrm{csc}^{4}\)

Population served: \(\qquad\) 26000 Range: \(\qquad\)
Township: \(\qquad\) 25N 13

1/4 1/4 Section: \(\qquad\)
Section: \(\qquad\)
Latitude/longitude (if available): \(\qquad\) 1 \(\qquad\)
How was lat./long. determined?
\(\qquad\) global positioning device \(\qquad\) survey \(\qquad\) topographic map
\(\qquad\) other: \(\qquad\)
* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V.

PART II: Well Construction and Source Information
1) Date well originally constructed: \(3,1,(-1\) month/day/year
last reconstruction: \(\underline{6}, 30\) Qu month/day/year
\(\qquad\) information unavailable

2) Well driller: \(\qquad\)
\(\qquad\) well driller unknown
3) Type of well:
__Drilled: _ rotary _ bored _ cable (percussion) __ Dug
_Other: _ \(^{\text {spring (s) }}\) __ lateral collector (Taney)
__ driven _ jetted __ other: _____
Additional comments: \(\qquad\)
4) Well report available?
__ YES (attach copy to form) \(X\) NO
If no well log is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: \(\qquad\) (gallons \(/ \mathrm{min}\) )

If not documented, how was pumping rate determined? \(\qquad\)
_ Pumping rate unknown
6) Is this source treated?
_ YES


If so, what type of treatment:
_ disinfection \(\qquad\) filtration \(\qquad\) carbon filter \(\qquad\) air stripper \(\qquad\) other

Purpose of treatment (describe materials to be removed or controlled by treatment):
7) If source is chlorinated, is a chlorine residual maintained: \(\qquad\) YES
 NO

Residual level: \(\qquad\) (At the point closest to the source.)

Survey Form Var. 2.2
page 2

\section*{PART III: Hydrogeologic Information}
1) Depth to top of open interval: [check one] (less than) 20 ft _ \(20-50 \mathrm{ft}\) _ \(50-100 \mathrm{ft}\) _ \(100-200 \mathrm{ft}\) _ (greater than) 200 ft
\(\qquad\) information unavailable
2) Depth to ground water (static water level):
_ (less than) 20 ft _ \(20-50 \mathrm{ft} \quad\) - \(50-100 \mathrm{ft} X\) (greater than) 100 ft
__ flowing well/spring (artesian)
How was water level determined?
\(\qquad\) well \(\log\) \(\qquad\)

\(\qquad\) depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure:
\(\qquad\) psi (pounds per square inch)
or
feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir, or catchment associated with this source: \(\qquad\) YES \(\qquad\) NO
5) Wellhead elevation (height above mean sea level): \(\qquad\) (ft)

How was elevation determined?
\(\qquad\) topographic map \(\qquad\) Drilling/Well Log \(\qquad\) altimeter
\(\qquad\) other: \(\qquad\)
 information unavailable
6) Confining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)
_ evidence of a confining layer in well log
- no evidence of a confining layer in well \(\log\)

If there is evidence of a confining layer, is the depth to ground water more than 20 feet above the bottom of the lowest confining layer? YES \(\qquad\) bottom of the lowest confining layer? information unavailable

\author{
Survey Form Yer. 2.2
}
7) Sanitary setback:
(less than) \(100 \mathrm{ft}^{*}\) \(\qquad\) \(100-120 \mathrm{ft}\) _ \(120-200 \mathrm{ft}\) __ (greater than) 200 ft * if less than 100 ft describe the site conditions:




8) Wellhead construction:

wellhead enclosed in a wellhouse
\(X \quad\) controlled access (describe): \(\operatorname{IC}(\mathrm{d} d\)
\(\qquad\)
- other uses for well house (describe): \(\qquad\)
\(\qquad\)
- no wellhead control
9) Surface seal:
_ 18 ft
__ (less than) 18 ft (no Department of Ecology approval)
_ (less than) 18 ft (Approved by Ecology, include documentation)

\(\bar{\chi}\)
(greater than) 18 ft
depth of seal unknown
__ no surface seal
10) Annual rainfall (inches per year):
__ (less than) \(10 \mathrm{in} / \mathrm{yr}\)
_ \(10-25 \mathrm{in} / \mathrm{yr}\)

(greater than) \(25 \mathrm{in} / \mathrm{yr}\)

\section*{PART IV: Mapping Your Ground Water Resource}
1) Annual volume of water pumped: \(\qquad\) (gallons)

How was this determined?
\(\qquad\) meter
\(\div\) estimated: \(\qquad\) pumping rate

_ pump capacity \(\qquad\)
\(\qquad\) other: \(\qquad\)
2) "Calculated Fixed Radius" estimate of ground water movement: (see Instruction Packet)

Information available on length of screened/open interval?
_ YES \(\square\) NO

Length of screened/open interval:
3) Is there a river, lake, pond, stream, or other obvious surface water body within the 6 month time of travel boundary? _ YES _ NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon, or holding pond located within the 6 month time of travel boundary? _ YES Z NO (mark and identify on map).

Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Der. 2.2
page 5

\section*{PART V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:

6 month 1 year 5 year unknown
likely pesticide application
stormwater injection wells
other injection wells
abandoned ground water well
landfills, dumps, disposal areas
known hazardous materials clean-up site water system(s) with known quality problems population density (greater than) 1 house/acte residences commonly bave septic tanks

Wastewater treatruent lagoons
sites used for land application of waste


Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:
Areix is \%oied Residentiachoural -
ExCEAT SOR FIRE Srithen LOCHED
ACEOSS STEEET EROM WELL.
2) Source specific water quality records:

Please indicate the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment, MOLs are listed in assistance package.)
A. Nitrate: (Nitrate \(\mathrm{MCL}=10 \mathrm{mg} / \mathrm{l}\) )

Results greater than MCL
(less than) \(2 \mathrm{mg} / \mathrm{iter}\) nitrate

\section*{YES}

2-5 mg/liter nitrate
(greater than) 5 mg /liter nitrate
Nitrate sampling records unavailable
B. VOLs: (VOC detection level \(0.5 \mathrm{ug} / \mathrm{l}\) or \(0.0005 \mathrm{mg} /\).)

YES
Results greater than MCL or SAL
VOC detected at least once
VOC test performed but never detected
VOC sampling records unavailable
C. EDB/DBCP:

YES
(EBB MCL \(=0.05 \mathrm{ug} /\) or \(0.00005 \mathrm{mg} /\). \(\mathrm{DBCP} \mathrm{MCL}=0.2 \mathrm{ug} /\) or \(0.0002 \mathrm{mg} /\).)
EDB/DBCP detected below MCL at least once
EDB/DBCP detected above MCL at least once
EDB/DBCP never detected
EDB/DBCP tests required but not yet completed
EDB/DBCP tests not required

D. Other SOC (pesticides and other synthetic organic chemicals):

YES
Other SOC detected
Other SOC tests performed but none detected *
Other SOC tests not performed
information linaorallable
*If any SOC in addition to EDB/DBCP were detected, please identify and date. If other SOC tests were performed, but no SOCs detected, list test methods here: \(\qquad\)
* Please note: in going throogit the cascade
 TEST, K TitS TIME. (KXE TEST RESLLUTS ARE ENClOSED).

\author{
Survey Form Var. 2.2
}
page 7

Any bacterial detections) in the past 3 years in samples taken from the source (not distribution sampling records).

Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source.

Source sampling records for bacteria unavailable
X

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a}

Non-Circular Zone of Contribution
The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.
1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)
\[
X \text { YES } \quad \text { _ NO }(I T R E A K i S)
\]

Describe with references to map produced in Part IV:
2) Aquifer Material:
A) Does the drilling \(\log\), well \(\log\) or other geologic/engineering reports identify that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?
\[
\text { - YES } \quad \text { no (Vikrimion) }
\]
B) Does the drilling log, well log or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?


3) Is the source located in an aquifer with a high horizontal flow rate? (These can include sources located on flood plains of large rivers, artesian wells with high water pressure, and/or shallow flowing wells and springs.)
_ YES _ NO
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs?
a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
\begin{tabular}{lll}
6 month travel time & YES NO unknown \\
6 month-1 year travel time & - \\
\(1-5\) year travel time & -
\end{tabular}
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...
\begin{tabular}{lll}
1 year travel time \\
\(1-5\) year travel time & - & - \\
\(5-10\) year travel time & -
\end{tabular}

Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.

\section*{Survey Form Ver. 2.2}

\section*{Suggestions and Comments}

Did you attend one of the susceptibility workshops?
Did you find it useful?
_ YES
- NO

Did you seek outside assistance to complete the assessment? YES NO YES NO

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Survey Form Ver. 2.2
page 10


\title{
EVALUATION AND REHABILITATION OF \\ CASCADE VIEW WELL 1
}

\section*{INTRODUCTION}

Cascade View Water District Well 1 was drilled and completed in 1961. The well penetrates a very permeable sand and gravel aquifer, but its yield is limited by the relativaly low water level. Since 1982, the well has been operated with the aid of a vacuum pump to increase production.

Recently, the District has been forced to reduce the pumping rate from Well 1 to prevent air entreinment in the discharged water. Since the well's flow meter has not worked for some time, ths actual pumping rates are unknown. This report describes AGl's evaluation of the current condition of the well and provides recommendations for continued operation.

\section*{findinas}

\section*{Stutlc Water Level Decline}

Static water levels measured in Well 1 have shown a decline of approximately 10 feet since 1961. The water levels shown on Figure 1 were measured at approximately the same tume of year and therefore suggest long-term water level decine rather than seasonal fluctuations. In similar local aquifers, high water levels generally occur in the spring when winter precipitation reaches the aquifer. Table 1 shows a seasonal rise in water level of 1.67 feet between the time the pump was removed in mid-April until testing was completed at the end of June.

Table 1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline Date & Depth to Water \\
\hline 3/27/61 & 120.00 ft \\
\hline 4/30/82 & 122.82 ft \\
\hline 4/18/94 & 130.35 ft \\
\hline 5/12/94 & 129.57 t \\
\hline 6/30/94 & 128.68 ft \\
\hline
\end{tabular}

More extensive water level records are needed to chart the actual seasonal change of water levels in this aquifer. Flgure 1 shows an Increased rate of water level decilne between 1882 and 1994. This decline may be caused by any or all of the following factors:
- Lower than normal precipitation, resutting in reduced recharge to the aquifer - Increased pumping from the aquifer
- Decreased recharge area from local development

If the incicated rate of deciine is constant, the static water level could reach the pump intake of 134.5 feet in about six years. Use of the well may have to be curtalled before thon.

A current yiokd of about 200 gpm is dependent on the vacuum system, used to maintain a higher than natural pumping levei in the well. Without the vacuum, the iong-term pumping yield would be less than 100 gpm .

\section*{Well Performance}

Sinca the well was drilled, AGI Technologies (Carr/Associates Inc.) has conducted two pumping tests of Well 1 for Cascade View (King County Water District 122). As shown on Figure 2, the 8 -tnch weil was completed in 1961 by H.O. Meyer Driling Company with 10 teet of 0.040 -inch slat Cook well screen, set between depths of 135 and 145 feet. Table 2 compares the results of the original 1961 test to the more recent tests.

Table 2


The original 1061 test showed a lower specific capacity than later tests, because it was conducted at a much higher pumping rate.
- Resealed the wellhead for vacuum pump operation.
- Installed a new well seal that allows access for periodic water level measurements without vacuum and mairtains an alright seal for the vacuum pump.

\section*{OTHER RECOMMENDATIONS}

For the District to recelve the maximum benefit from Well 1, we recommend:
- Measuring static water levels monthly and recording the results
- Conserving the good quality water found in this aquifer by pumping only the amount required for blending with other District water of lessor quality
- Recording the quantites pumped
- Pumping Well 1 only with the vacuum pump in operation
- Exploring for this shallow aquiter in other parts of the service area
- Reevaluating the monthly water level data within two years




\begin{tabular}{|c|c|c|}
\hline J.R. CARR / ASSOCIATES \\
\begin{tabular}{c} 
APRR 1982 \\
PROJ. \(235-2\)
\end{tabular} & K. C. W. D. 122 & \begin{tabular}{c} 
AOAPTED FROM. \\
H2O MEYER WELL LOG \\
1961 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\(45^{3} \mathrm{~J}\)

\section*{WATER FACLITES INVENTOPY（WEI}是等

Reas instructions on back．before completing
\begin{tabular}{|c|c|}
\hline  &  \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
E．EYSTEMNAME \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{P．O．BOX｜｜F APPLICABLE} \\
\hline GITY
\[
\therefore \because A \square^{\circ}
\] &  \\
\hline \begin{tabular}{l}
4．OWNEA＇S NAME（LAST，FIRST） \\
\(\therefore\) ：1．
\end{tabular} & \(\therefore\) TIF \(\quad\) a \begin{tabular}{r} 
OWEANC \\
30.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{STREET AOORESS
\[
1520 \because=
\]} \\
\hline \multicolumn{2}{|l|}{P．O．COX fiF APPLICABLET} \\
\hline GITY
\[
\therefore \therefore \therefore \therefore \therefore H
\] & \begin{tabular}{cc} 
STATE & \(Z P\) CODE \\
WA & DSO． \\
O．
\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
DAY TELEPHONE \\
EVENING TELEPMONE
\end{tabular}} \\
\hline \begin{tabular}{l}
6．OWNITRSHPP \\
（CHECK ONE OHLY）
\end{tabular} & 7．PRISDOLINANT CHARACTEASIIC （CHECK ONE ORLY） \\
\hline PRIVATE NON－PROFIT PRNATE FOR－PAOFIT LOCAL GOVERNMENT （COUNTYICITY／PUD／ WATER OSTRICT
\(\square\) STATE
\(\square\) FEDERAL & \begin{tabular}{l}
\begin{tabular}{|l|l}
\hline\(\therefore\) \\
\hline & \\
\hline & \\
\(\square\) & \\
\hline & \\
\hline & \\
\hline
\end{tabular} \\
RESIDENTIAL \\
RECAEATKNAL GUSINESS／NOUSTRUAL／ AGRICILTURAL／COMMEAEIAL LODG：NG／FOOD SERVICE SChOOL／DAY CARE OTHER ICHURCHES．ETG：
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline WFI COMDEETE： & T゙いて \\
\hline \multicolumn{2}{|l|}{SAU＇TĖ－EPMONE DATE} \\
\hline S SUABiTTED ¡NEV＇SYSTEDA &  \\
\hline \multicolumn{2}{|l|}{－OLO SYSTEM NAMAE－ENTER ONLY F CHANGING WITH THIS WFI} \\
\hline \multicolumn{2}{|l|}{ BNTHEME SERVEDAY THE SYSTEM，COMPIETE THIS SECTROW} \\
\hline c．NUMAER ACTIVE RESIDENTIAL COMNECTIONS
-cit & 10．NLMMEEA ACTIVE RESIDENTIAL POPULATION
\[
27.595
\] \\
\hline \multicolumn{2}{|l|}{SYETGMS sthung ANY NON－RESTDENTS（le，TAAVELEAS， EmFLOYEES，STUDENTS，ETC．，COMPLETE THS SECTION} \\
\hline \multicolumn{2}{|l|}{11．NUMEER NON－AESIDENTIAL CONNECTIONS} \\
\hline \multicolumn{2}{|l|}{12．ENTER AVERAGE DAILY NON－PESIDENTIAL POPLLLATION SERVED FOA EACH MONTH．MAKE ENTRY FOR EACH MONTH} \\
\hline  &  \\
\hline \multicolumn{2}{|l|}{13．OOE5 THE SYSTEM SERVE AT LEAST 25 OF THE SAME NON－RESIDENTS FOP 4 DA MORE DAYS PER WEEK FOR AT LEAST 18O OAYS PER YEAR？
YES \(\square\) NO} \\
\hline 14．TOTAL NUMBER CONNECTIONS METERED
\[
9 \cdot 6 \div 1
\] & \begin{tabular}{l}
15．OASTRIBUTION AESERVOIAIS） TOTAL CAPACITY
\[
12 . \varepsilon 50.000
\] \\
GALIONS
\end{tabular} \\
\hline
\end{tabular}
 WATER FACILITIES INVENTORY (WFI)

Environmental Health
Read instructions on back before completing

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{WfI COMPLETEO OY Tris} \\
\hline \multicolumn{2}{|l|}{OAY TELEPMONE} & \multicolumn{2}{|l|}{Date} \\
\hline \[
\begin{aligned}
& \text { 8. SUOMMTTED } \\
& \text { FOA }
\end{aligned}
\] & jnew shstem system name change. &  & - ofeletete \\
\hline \multicolumn{4}{|l|}{+OLO SYSTEM NAME - ENTER ONLY IF CHANGING WITH THIS Wh} \\
\hline \multicolumn{4}{|l|}{SYSTEMS SEHVING ANY RESTDENTS (PEOPLE UYING IN A OWELUNG SESVED BY THE SYSTEM, COMPLETE THIS SECTRON} \\
\hline \multicolumn{2}{|l|}{9. NuIMEER ACTIVE RESDEENTIAL CONNECTION:} & \multicolumn{2}{|l|}{10. NUMBER ACTNE RESDENTIAL MOPULATION} \\
\hline \multicolumn{4}{|l|}{SYstems serving any Non-RESIDENTS (LE Thavelers, EMPLOYEES, STUDENTS, ETC.} \\
\hline \multicolumn{4}{|l|}{11. NLMEER NON-RESIOENTALL CONNECTIONS} \\
\hline \multicolumn{4}{|l|}{12. ENTER AVERAGE DALLY NON-RESIOENTIAL POPULATION SERVED FOQ EACH MONTH, MAXE ENTRY FOR EACH MONTH} \\
\hline \begin{tabular}{l}
淡 \\
ra \\
man
\end{tabular} &  & \begin{tabular}{l}
AHY \\
ana \\
35
\end{tabular} & |oer. \\
\hline 13. DOES THE S FOR 4 OR M & \begin{tabular}{l}
M SERVE AT LEAST 25 OF AYS PER WEEK FOR AT LE \\
yes \(\square\) No
\end{tabular} & F THE SAME NON.RESID EEAST TAO DAYS PER Y & ENTS EAR? \\
\hline 14. TOTAL NUMB CONNECTIO & TERED & 15. OISTRIEUTION RES TOTAL CAPACITY & \begin{tabular}{l}
ERVOM\{ \\
GALIONS
\end{tabular} \\
\hline
\end{tabular}



\title{
Ground Water Contamination Susceptibility Assessment Survey Form
}

Version 2.2
IMPORTANT!Please complete one form for each ground water source
(well, wellfield, spring) used in your water system.
Photocopy as necessary.

\section*{PART I: System Information}

Well owner/manager : __ Sammamish Plateau Water \& Sewer District
Water system name : \(\qquad\)
Sammamish Plateau Water \& Sewer District
County:_King
Water system number: \(\qquad\) Source number: New Replacement Well (Replaces
Original Well 13 source number SO9
Well depth: \(\qquad\) (ft.) (From WFI form)

Source name: \(\qquad\)
WA well identification tag number: \(\underline{\text { AAS }} \underline{174}\)

Number of connections: \(\qquad\) Population served: \(\quad 48,036\)

Township: 25 N

Range: \(\qquad\)
Section: \(\qquad\) 1/4 1/4 Section: SW1/4 of the NW1/4

Latitude/longitude (if available): \(\qquad\)
How was lat./long. determined?
global positioning device \(\qquad\) survey ___ topographic map
x _other: Online King County imap - http://www.metrokc.gov/gis/mapportal/iMAP_main.htm
* Please refer to Assistance Packet for details and explanations of all questions in Parts II through V.

\section*{PART II: Well Construction and Source Information}
1) Date well originally constructed: \(\underline{01} / \underline{31} / \underline{06}\) month/day/year
last reconstruction: _ / _ / _ month/day/year
\(\qquad\) information unavailable
2) Well driller: __Stephen I Schneider - Schneider Equipment Inc.

21881 River Road NE
St. Paul, Oregon 97137
\(\qquad\) well driller unknown
3) Type of well:
x Drilled: X rotary _ bored _ cable (percussion) _ Dug
_ Other: _ spring(s) _ lateral collector (Ranney)
_ driven _ jetted _ other:
Additional comments: \(\qquad\)
4) Well report available? \(x\) YES (attach copy to form) _ NO

If no well \(\log\) is available, please attach any other records documenting well construction; e.g. boring logs, "as built" sheets, engineering reports, well reconstruction logs.
5) Average pumping rate: \(\qquad\) (gallons/min)

Source of information: Replacement Well 13R Construction and Testing Report (CDM, 2006)
If not documented, how was pumping rate determined? \(\qquad\)
_ Pumping rate unknown
6) Is this source treated?

If so, what type of treatment:
\(\underline{x}\) disinfection \(\underline{x}\) filtration _ carbon filter _ air stripper _ other
Purpose of treatment (describe materials to be removed or controlled by treatment):
Water is chlorinated and filtered to remove Manganese and Arsenic
7) If source is chlorinated, is a chlorine residual maintained: \(\underline{X}\) YES _ NO

Residual level: minimum 0.3 ppm free after the filters (At the point closest to the source.)

\section*{PART III: Hydrogeologic Information}
1) Depth to top of open interval: [check one]

__ information unavailable ('<' means less than; '>' means greater than)
2) Depth to ground water (static water level):
\(\ldots<20 \mathrm{ft} \quad \ldots 20-50 \mathrm{ft} \quad \quad^{50-100 \mathrm{ft} \quad \underline{X}>100 \mathrm{ft}}\)
__flowing well/spring (artesian)
How was water level determined?
_ well \(\log \quad \underline{\mathbf{X}}\) other: _ Measured to within 0.01 ft with electronic sounding device
_ depth to ground water unknown
3) If source is a flowing well or spring, what is the confining pressure:
\(\qquad\) psi (pounds per square inch)
or
\(\qquad\) feet above wellhead
4) If source is a flowing well or spring, is there a surface impoundment, reservoir, or catchment associated with this source: \(\qquad\) YES \(\qquad\) NO
5) Wellhead elevation (height above mean sea level):
\(640(\mathrm{ft})\)
How was elevation determined? \(\underline{\mathbf{X}}\) topographic map _ Drilling/Well Log _ altimeter _ other: \(\qquad\)
__ information unavailable
6) Confining layers: (This can be completed only for those sources with a drilling log, well log or geologic report describing subsurface conditions. Please refer to assistance package for example.)

X evidence of a confining layer in well log
_ no evidence of a confining layer in well log
If there is evidence of a confining layer, is the depth to ground water more than 20 feet above the bottom of the lowest confining layer?

X YES \(\qquad\)
_ information unavailable
7) Sanitary setback:
\[
\underline{X}<100 \mathrm{ft}^{*} \quad{ }^{100-120 \mathrm{ft}} \quad 120-200 \mathrm{ft} \ldots>200 \mathrm{ft}
\]
* if less than 100 ft describe the site conditions:

Well site is about 90 feet from the north fence line that is 10 feet within the property boundary. The proposed 90 ft protective radius was allowed by King County Health Department due to the deep \((810 \mathrm{ft})\) surface seal
8) Wellhead construction:

X wellhead enclosed in a wellhouse
X controlled access (describe): The well will be locked in a wellhouse that is
monitored via telemetered security systems. The wellhouse will be inside a locked fence.
- other uses for wellhouse (describe): \(\qquad\)
\(\qquad\)
_ no wellhead control
9) Surface seal:
_ 18 ft
_ < 18 ft (no Department of Ecology approval) ('<' means less than)
\(\ldots<18 \mathrm{ft}\) (Approved by Ecology, include documentation)('<' means less than)
\(\underline{\mathbf{X}}>18 \mathrm{ft} \quad\) ('>' means greater than)
__depth of seal unknown
_ no surface seal
10) Annual rainfall (inches per year):
\[
\ldots<10 \mathrm{in} / \mathrm{yr} \quad \_^{10-25 \mathrm{in} / \mathrm{yr} \underline{\mathrm{X}}>25 \mathrm{in} / \mathrm{yr}}
\]

\section*{PART IV: Mapping Your Ground Water Resource}
1) Annual volume of water pumped: \(\underline{73,000,000}\) (gallons)

How was this determined?
\(\qquad\) meter
_ estimated: _ pumping rate \(\qquad\)
_ _ pump capacity ( \(\qquad\)
X other: _ Water Right
2) "Calculated Fixed Radius" estimate of ground water movement:
(see Instruction Packet)
6 month ground water travel time : 332 (ft)

1 year ground water travel time :
470

5 year ground water travel time:
809
10 year ground water travel time:
1,144
Information available on length of screened/open interval?
X YES_NO
Length of screened/open interval: 95 (ft)
3) Is there a river, lake, pond, stream, or other obvious surface water body within the 6 month time of travel boundary? __YES X NO (mark and identify on map).
4) Is there a stormwater and/or wastewater facility, treatment lagoon, or holding pond located within the 6 month time of travel boundary? _ YES X NO (mark and identify on map).

Comments: \(\qquad\)

\section*{PART V: Assessment of Water Quality}
1) Regional sources of risk to ground water:

Please indicate if any of the following are present within a circular area around your water source having a radius up to and including the five year ground water travel time:

6 month 1 year 5 year unknown

\(\qquad\)
sites used for land application of waste \(\qquad\)
\(\qquad\)

Mark and identify on map any of the risks listed above which are located within the 6 month time of travel boundary? (Please include a map of the wellhead and time of travel areas with this form. Please locate and mark any of the following.)

If other recorded or potential sources of ground water contamination exist within the ten year time of travel circular zone around your water supply, please describe:

The Wellhead Protection Program for Plateau and Cascade View wells Report prepared in June 24, 1998
for the Sammamish Plateau Water \& Sewer District discussed the ground water flow for the Plateau area wells
which includes original Well 13 in Zone IV. The top of Zone IV occurs at elevations of approximately 340 to 500 feet below sea level.

The Risk assessment for Well 13 in this report was identified as low due to the depth of the aquifer and the thickness of the confining layers above the top of this aquifer ( \(>500 \mathrm{ft}\) ).

The District may pursue UIC registration for original Well 13 to be used as a recharge well as part of the Cascade View Aquifer System ASR project. Potable system groundwater is used for the injection source.

\section*{2) Source specific water quality records:}

Please indicate the occurrence of any test results since 1986 that meet the following conditions: (Unless listed on assessment, MCLs are listed in assistance package.)


If any SOCs in addition to EDB/DBCP were detected, please identify and date. If other SOC tests were performed, but no SOCs detected, list test methods here: \(\qquad\)

Any bacterial detection(s) in the past \(\underline{3}\) years in samples taken from the source (not distribution sampling records) \(\qquad\)
\(\qquad\)
Has source (in past 3 years) had a bacteriological contamination problem found in distribution samples that was attributed to the source. \(\qquad\)
\(\qquad\)

Source sampling records for bacteria unavailable

\section*{Part VI: Geographic or Hydrologic Factors Contributing to a Non-Circular Zone of Contribution}

The following questions will help identify those ground water systems which may not be accurately represented by the calculated fixed radius (CFR) method described in Part IV. For these sources, the CFR areas should be used as a preliminary delineation of the critical time of travel zones for that source. As a system develops its Wellhead Protection Plan for theses sources, a more detailed delineation method should be considered.
1) Is there evidence of obvious hydrologic boundaries within the 10 year time of travel zone of the CFR? (Does the largest circle extend over a stream, river, lake, up a steep hillside, and/or over a mountain or ridge?)


Describe with references to map produced in Part IV:
2) Aquifer Material:
A) Does the drilling log, well log or other geologic/engineering reports identify that the well is located in an area where the underground conditions are identified as fractured rock and/or basalt terrain?
\[
\ldots \text { YES } \quad \underline{X} \text { NO }
\]
B) Does the drilling log, well log or other geologic/engineering reports indicate that the well is located in an area where the underground conditions are primarily identified as coarse sand and gravel?
\[
\underline{X} \text { YES } \quad-\mathrm{NO}
\]
3) Is the source located in an aquifer with a high horizontal flow rate? (These can include sources located on flood plains of large rivers, artesian wells with high water pressure, and/or shallow flowing wells and springs.)
_ YES \(\quad \mathrm{X}\) NO
4) Are there other high capacity wells (agricultural, municipal and/or industrial) located within the CFRs? YES
a) Presence of ground water extraction wells removing more than approximately \(500 \mathrm{gal} / \mathrm{min}\) within...
\begin{tabular}{|c|c|}
\hline & YES NO \\
\hline < 6 month travel time & X \\
\hline 6 month-1 year travel time & X \\
\hline 1-5 year travel time & X \\
\hline 5-10 year travel time & X \\
\hline
\end{tabular}
b) Presence of ground water recharge wells (dry wells) or heavy irrigation within...
\(<1\) year travel time
YES NO unknown

1-5 year travel time
\(\qquad\)
\(\qquad\)
5-10 year travel time
Please identify or describe additional hydrologic or geographic conditions that you believe may affect the shape of the zone of contribution for this source. Where possible, reference them to locations on the map produced in Part IV.

\section*{Suggestions and Comments}
\begin{tabular}{lll} 
Did you attend one of the susceptibility workshops? & \(\ldots\) YES & X NO \\
Did you find it useful? & \(\ldots\) YES & _ NO \\
Did you seek outside assistance to complete the assessment? & \(\underline{X}\) YES & _ NO
\end{tabular}

This form and instruction packet are still in the process of development. Your comments, suggestions and questions will help us upgrade and improve this assessment form. If you found particular sections confusing or problematic please let us know. How could this susceptibility assessment be improved or made clearer? Did the instruction package help you find the information needed to complete the assessment? How much time did it take you to complete the form? Were you able to complete the assessment without additional/outside expertise? Do you feel the assessment was valuable as a learning experience? Any other comments or constructive criticisms you have would be appreciated.


Sammamish Plateau Water and Sewer District Well 13R Calculated Fixed Radius Map```


[^0]:    Survey Form Var. 2.1

[^1]:    Survey Farm Ver. 2.1
    Däge -

