Ocean acidification and its biological impacts

Shallin Busch, Ph.D.
Northwest Fisheries Science Center
National Oceanic and Atmospheric Administration

Earth's history shows us that communities change

often in response to changing climatic conditions

What will ecological communities of the future look like?

What is acidity? What is pH?

- Acidity is a measure of H⁺
- pH is the scale used to measure how acidic or how basic something is
- pH is measured on the log scale
- Change in o.1 pH unit is a 30% increase in H+

Acidification has already occurred

$$CO_{2(atmos)} \leftrightarrow CO_{2(aq)} + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^- \leftrightarrow 2H^+ + CO_3^{2-}$$

 $\mathsf{CO}_{2(\mathsf{atmos})} \; \leftrightarrow \mathsf{CO}_{2(\mathsf{aq})} + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{H}_2\mathsf{CO}_3 \leftrightarrow \mathsf{H}^+ + \mathsf{HCO}_3^{--} \leftrightarrow 2\mathsf{H}^+ + \mathsf{CO}_3^{-2-}$

350

325

300

Dore et al., 2009

Dore et al., 2009

Ocean acidity could increase 100-150% by the year 2100.

Ocean acidification on the West Coast

Local oceanography

Nutrients and acidification

What is the fate of marine communities under ocean acidification?

Physiological processes are sensitive to carbon dioxide and pH

OA can have many effects

Respiration

Development

Behavior/Nervous system

Growth

What we know

What we can infer

Oysters in Netart's Bay

Oysters in Netart's Bay

Low CO₂ High CO₂

Species response to pCO₂ can vary

Eastern oyster

Suminoe oyster

Research on commercial shellfish

OA negatively affects pteropods

There will be surprises!

Munday et al. 2009, 2010; Simpson et al. 2011; Nilsson et al. 2012

Sun et al. 2011, Fu et al. 2010

A natural experiment in Italy

High CO₂

J. Hall-Spencer

Complex systems have complex responses

OA will affect marine food webs

Which species are affected by OA will drive the nature of the food web response

OA will affect marine food webs

OA impacts on just one or a few species can have big effects on the food web and ecosystem services

Impacts of multiple stressors

What we know

- The ocean is acidifying rapidly
- Some local species will be sensitive to OA
- Biological responses to OA are variable
- Impacts of OA will ripple through food webs
- Other stressors can exacerbate species response